Cargando…
Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets
Predicting protein-ligand interactions using artificial intelligence (AI) models has attracted great interest in recent years. However, data-driven AI models unequivocally suffer from a lack of sufficiently large and unbiased datasets. Here, we systematically investigated the data biases on the PDBb...
Autores principales: | Yang, Jincai, Shen, Cheng, Huang, Niu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052818/ https://www.ncbi.nlm.nih.gov/pubmed/32161539 http://dx.doi.org/10.3389/fphar.2020.00069 |
Ejemplares similares
-
The Pretenders
por: Wren, Mike
Publicado: (1995) -
The Great Pretender
por: Potokar, John
Publicado: (1992) -
A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset
por: Pascual, Rosalia, et al.
Publicado: (2019) -
You Pretend, I Laugh: Associations Between Dyadic Pretend Play and Children's Display of Positive Emotions
por: Rao, Zhen, et al.
Publicado: (2021) -
Artificial Intelligence-Based Differential Diagnosis: Development and Validation of a Probabilistic Model to Address Lack of Large-Scale Clinical Datasets
por: Chishti, Shahrukh, et al.
Publicado: (2020)