Cargando…

Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis

Background: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. Methods: D...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Ze Bo, Lu, Jian, Chen, Pei Pei, Lu, Chen Chen, Zhang, Jia Xiu, Li, Xue Qi, Yuan, Ben Yin, Huang, Si Jia, Ruan, Xiong Zhong, Liu, Bi Cheng, Ma, Kun Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052905/
https://www.ncbi.nlm.nih.gov/pubmed/32194836
http://dx.doi.org/10.7150/thno.40571
_version_ 1783502941474258944
author Hu, Ze Bo
Lu, Jian
Chen, Pei Pei
Lu, Chen Chen
Zhang, Jia Xiu
Li, Xue Qi
Yuan, Ben Yin
Huang, Si Jia
Ruan, Xiong Zhong
Liu, Bi Cheng
Ma, Kun Ling
author_facet Hu, Ze Bo
Lu, Jian
Chen, Pei Pei
Lu, Chen Chen
Zhang, Jia Xiu
Li, Xue Qi
Yuan, Ben Yin
Huang, Si Jia
Ruan, Xiong Zhong
Liu, Bi Cheng
Ma, Kun Ling
author_sort Hu, Ze Bo
collection PubMed
description Background: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. Methods: Diabetic rats treated with broad-spectrum oral antibiotics or faecal microbiota transplantation (FMT) from the healthy donor group and human kidney 2 (HK-2) cells stimulated with sodium acetate were used to observe the effects of gut microbiota on cholesterol homeostasis. The gut microbiota distribution was measured by 16S rDNA sequencing with faeces. Serum acetate level was examined by gas chromatographic analysis. Protein expression of G protein coupled receptor 43 (GPR43) and molecules involved in cholesterol homeostasis were assessed by immunohistochemical staining, immunofluorescence staining, and Western Blotting. Results: Depletion of gut microbiota significantly attenuated albuminuria and tubulointerstitial injury. Interestingly, serum acetate levels were also markedly decreased in antibiotics-treated diabetic rats and positively correlated with the cholesterol contents in kidneys. An in vitro study demonstrated that acetate significantly increased cholesterol accumulation in HK-2 cells, which was caused by increased expression of proteins mainly modulating cholesterol synthesis and uptake. As expected, FMT effectively decreased serum acetate levels and alleviated tubulointerstitial injury in diabetic rats through overriding the disruption of cholesterol homeostasis. Furthermore, GPR43 siRNA treatment blocked acetate-mediated cholesterol homeostasis dysregulation in HK-2 cells through decreasing the expression of proteins governed cholesterol synthesis and uptake. Conclusion: Our studies for the first time demonstrated that the acetate produced from gut microbiota mediated the dysregulation of cholesterol homeostasis through the activation of GPR43, thereby contributing to the tubulointerstitial injury of DN, suggesting that gut microbiota reprogramming might be a new strategy for DN prevention and therapy.
format Online
Article
Text
id pubmed-7052905
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-70529052020-03-19 Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis Hu, Ze Bo Lu, Jian Chen, Pei Pei Lu, Chen Chen Zhang, Jia Xiu Li, Xue Qi Yuan, Ben Yin Huang, Si Jia Ruan, Xiong Zhong Liu, Bi Cheng Ma, Kun Ling Theranostics Research Paper Background: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. Methods: Diabetic rats treated with broad-spectrum oral antibiotics or faecal microbiota transplantation (FMT) from the healthy donor group and human kidney 2 (HK-2) cells stimulated with sodium acetate were used to observe the effects of gut microbiota on cholesterol homeostasis. The gut microbiota distribution was measured by 16S rDNA sequencing with faeces. Serum acetate level was examined by gas chromatographic analysis. Protein expression of G protein coupled receptor 43 (GPR43) and molecules involved in cholesterol homeostasis were assessed by immunohistochemical staining, immunofluorescence staining, and Western Blotting. Results: Depletion of gut microbiota significantly attenuated albuminuria and tubulointerstitial injury. Interestingly, serum acetate levels were also markedly decreased in antibiotics-treated diabetic rats and positively correlated with the cholesterol contents in kidneys. An in vitro study demonstrated that acetate significantly increased cholesterol accumulation in HK-2 cells, which was caused by increased expression of proteins mainly modulating cholesterol synthesis and uptake. As expected, FMT effectively decreased serum acetate levels and alleviated tubulointerstitial injury in diabetic rats through overriding the disruption of cholesterol homeostasis. Furthermore, GPR43 siRNA treatment blocked acetate-mediated cholesterol homeostasis dysregulation in HK-2 cells through decreasing the expression of proteins governed cholesterol synthesis and uptake. Conclusion: Our studies for the first time demonstrated that the acetate produced from gut microbiota mediated the dysregulation of cholesterol homeostasis through the activation of GPR43, thereby contributing to the tubulointerstitial injury of DN, suggesting that gut microbiota reprogramming might be a new strategy for DN prevention and therapy. Ivyspring International Publisher 2020-02-03 /pmc/articles/PMC7052905/ /pubmed/32194836 http://dx.doi.org/10.7150/thno.40571 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Hu, Ze Bo
Lu, Jian
Chen, Pei Pei
Lu, Chen Chen
Zhang, Jia Xiu
Li, Xue Qi
Yuan, Ben Yin
Huang, Si Jia
Ruan, Xiong Zhong
Liu, Bi Cheng
Ma, Kun Ling
Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title_full Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title_fullStr Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title_full_unstemmed Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title_short Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
title_sort dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052905/
https://www.ncbi.nlm.nih.gov/pubmed/32194836
http://dx.doi.org/10.7150/thno.40571
work_keys_str_mv AT huzebo dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT lujian dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT chenpeipei dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT luchenchen dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT zhangjiaxiu dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT lixueqi dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT yuanbenyin dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT huangsijia dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT ruanxiongzhong dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT liubicheng dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis
AT makunling dysbiosisofintestinalmicrobiotamediatestubulointerstitialinjuryindiabeticnephropathyviathedisruptionofcholesterolhomeostasis