Cargando…
ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL
Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported tha...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054000/ https://www.ncbi.nlm.nih.gov/pubmed/32065581 http://dx.doi.org/10.7554/eLife.52091 |
_version_ | 1783503125894660096 |
---|---|
author | Wutz, Gordana Ladurner, Rene St Hilaire, Brian Glenn Stocsits, Roman R Nagasaka, Kota Pignard, Benoit Sanborn, Adrian Tang, Wen Várnai, Csilla Ivanov, Miroslav P Schoenfelder, Stefan van der Lelij, Petra Huang, Xingfan Dürnberger, Gerhard Roitinger, Elisabeth Mechtler, Karl Davidson, Iain Finley Fraser, Peter Lieberman-Aiden, Erez Peters, Jan-Michael |
author_facet | Wutz, Gordana Ladurner, Rene St Hilaire, Brian Glenn Stocsits, Roman R Nagasaka, Kota Pignard, Benoit Sanborn, Adrian Tang, Wen Várnai, Csilla Ivanov, Miroslav P Schoenfelder, Stefan van der Lelij, Petra Huang, Xingfan Dürnberger, Gerhard Roitinger, Elisabeth Mechtler, Karl Davidson, Iain Finley Fraser, Peter Lieberman-Aiden, Erez Peters, Jan-Michael |
author_sort | Wutz, Gordana |
collection | PubMed |
description | Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesin(STAG1) which binds chromatin for hours, whereas cohesin(STAG2) binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesin(STAG1) complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesin(STAG1) forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesin(STAG2) extrusion activity. |
format | Online Article Text |
id | pubmed-7054000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-70540002020-03-05 ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL Wutz, Gordana Ladurner, Rene St Hilaire, Brian Glenn Stocsits, Roman R Nagasaka, Kota Pignard, Benoit Sanborn, Adrian Tang, Wen Várnai, Csilla Ivanov, Miroslav P Schoenfelder, Stefan van der Lelij, Petra Huang, Xingfan Dürnberger, Gerhard Roitinger, Elisabeth Mechtler, Karl Davidson, Iain Finley Fraser, Peter Lieberman-Aiden, Erez Peters, Jan-Michael eLife Cell Biology Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesin(STAG1) which binds chromatin for hours, whereas cohesin(STAG2) binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesin(STAG1) complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesin(STAG1) forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesin(STAG2) extrusion activity. eLife Sciences Publications, Ltd 2020-02-17 /pmc/articles/PMC7054000/ /pubmed/32065581 http://dx.doi.org/10.7554/eLife.52091 Text en © 2020, Wutz et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Wutz, Gordana Ladurner, Rene St Hilaire, Brian Glenn Stocsits, Roman R Nagasaka, Kota Pignard, Benoit Sanborn, Adrian Tang, Wen Várnai, Csilla Ivanov, Miroslav P Schoenfelder, Stefan van der Lelij, Petra Huang, Xingfan Dürnberger, Gerhard Roitinger, Elisabeth Mechtler, Karl Davidson, Iain Finley Fraser, Peter Lieberman-Aiden, Erez Peters, Jan-Michael ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title_full | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title_fullStr | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title_full_unstemmed | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title_short | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesin(STAG1) from WAPL |
title_sort | esco1 and ctcf enable formation of long chromatin loops by protecting cohesin(stag1) from wapl |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054000/ https://www.ncbi.nlm.nih.gov/pubmed/32065581 http://dx.doi.org/10.7554/eLife.52091 |
work_keys_str_mv | AT wutzgordana esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT ladurnerrene esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT sthilairebrianglenn esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT stocsitsromanr esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT nagasakakota esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT pignardbenoit esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT sanbornadrian esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT tangwen esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT varnaicsilla esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT ivanovmiroslavp esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT schoenfelderstefan esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT vanderlelijpetra esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT huangxingfan esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT durnbergergerhard esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT roitingerelisabeth esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT mechtlerkarl esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT davidsoniainfinley esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT fraserpeter esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT liebermanaidenerez esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl AT petersjanmichael esco1andctcfenableformationoflongchromatinloopsbyprotectingcohesinstag1fromwapl |