Cargando…
Personalizing Heart Rate-Based Seizure Detection Using Supervised SVM Transfer Learning
Objective: Automated seizure detection is a key aspect of wearable seizure warning systems. As a result, the quality of life of refractory epilepsy patients could be improved. Most state-of-the-art algorithms for heart rate-based seizure detection use a so-called patient-independent approach, which...
Autores principales: | De Cooman, Thomas, Vandecasteele, Kaat, Varon, Carolina, Hunyadi, Borbála, Cleeren, Evy, Van Paesschen, Wim, Van Huffel, Sabine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054223/ https://www.ncbi.nlm.nih.gov/pubmed/32161573 http://dx.doi.org/10.3389/fneur.2020.00145 |
Ejemplares similares
-
Visual seizure annotation and automated seizure detection using behind‐the‐ear electroencephalographic channels
por: Vandecasteele, Kaat, et al.
Publicado: (2020) -
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment
por: Vandecasteele, Kaat, et al.
Publicado: (2017) -
The power of ECG in multimodal patient‐specific seizure monitoring: Added value to an EEG‐based detector using limited channels
por: Vandecasteele, Kaat, et al.
Publicado: (2021) -
Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy
por: Gu, Ying, et al.
Publicado: (2017) -
Semi-automated EEG Enhancement Improves Localization of Ictal Onset Zone With EEG-Correlated fMRI
por: Van Eyndhoven, Simon, et al.
Publicado: (2019)