Cargando…

An atlas of evidence-based phenotypic associations across the mouse phenome

To date, reliable relationships between mammalian phenotypes, based on diagnostic test measurements, have not been reported on a large scale. The purpose of this study was to present a large mouse phenotype-phenotype relationships dataset as a reference resource, alongside detailed evaluation of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanaka, Nobuhiko, Masuya, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054260/
https://www.ncbi.nlm.nih.gov/pubmed/32127602
http://dx.doi.org/10.1038/s41598-020-60891-w
Descripción
Sumario:To date, reliable relationships between mammalian phenotypes, based on diagnostic test measurements, have not been reported on a large scale. The purpose of this study was to present a large mouse phenotype-phenotype relationships dataset as a reference resource, alongside detailed evaluation of the resource. We used bias-minimized comprehensive mouse phenotype data and applied association rule mining to a dataset consisting of only binary (normal and abnormal phenotypes) data to determine relationships among phenotypes. We present 3,686 evidence-based significant associations, comprising 345 phenotypes covering 60 biological systems (functions), and evaluate their characteristics in detail. To evaluate the relationships, we defined a set of phenotype-phenotype association pairs (PPAPs) as a module of phenotypic expression for each of the 345 phenotypes. By analyzing each PPAP, we identified phenotype sub-networks consisting of the largest numbers of phenotypes and distinct biological systems. Furthermore, using hierarchical clustering based on phenotype similarities among the 345 PPAPs, we identified seven community types within a putative phenome-wide association network. Moreover, to promote leverage of these data, we developed and published web-application tools. These mouse phenome-wide phenotype-phenotype association data reveal general principles of relationships among mammalian phenotypes and provide a reference resource for biomedical analyses.