Cargando…
Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data
Chromatin interaction studies can reveal how the genome is organized into spatially confined sub-compartments in the nucleus. However, accurately identifying sub-compartments from chromatin interaction data remains a challenge in computational biology. Here, we present Sub-Compartment Identifier (SC...
Autores principales: | Ashoor, Haitham, Chen, Xiaowen, Rosikiewicz, Wojciech, Wang, Jiahui, Cheng, Albert, Wang, Ping, Ruan, Yijun, Li, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054322/ https://www.ncbi.nlm.nih.gov/pubmed/32127534 http://dx.doi.org/10.1038/s41467-020-14974-x |
Ejemplares similares
-
Integrative chromatin domain annotation through graph embedding of Hi-C data
por: Shokraneh, Neda, et al.
Publicado: (2022) -
Unsupervised embedding of single-cell Hi-C data
por: Liu, Jie, et al.
Publicado: (2018) -
HiC-Pro: an optimized and flexible pipeline for Hi-C data processing
por: Servant, Nicolas, et al.
Publicado: (2015) -
HiCmapTools: a tool to access HiC contact maps
por: Chang, Jia-Ming, et al.
Publicado: (2022) -
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023)