Cargando…
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
The development of deep learning algorithms for complex tasks in digital medicine has relied on the availability of large labeled training datasets, usually containing hundreds of thousands of examples. The purpose of this study was to develop a 3D deep learning model, AppendiXNet, to detect appendi...
Autores principales: | Rajpurkar, Pranav, Park, Allison, Irvin, Jeremy, Chute, Chris, Bereket, Michael, Mastrodicasa, Domenico, Langlotz, Curtis P., Lungren, Matthew P., Ng, Andrew Y., Patel, Bhavik N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054445/ https://www.ncbi.nlm.nih.gov/pubmed/32127625 http://dx.doi.org/10.1038/s41598-020-61055-6 |
Ejemplares similares
-
Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model
por: Park, Allison, et al.
Publicado: (2019) -
Author Correction: Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
eXnet: An Efficient Approach for Emotion Recognition in the Wild
por: Riaz, Muhammad Naveed, et al.
Publicado: (2020) -
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
por: Tiu, Ekin, et al.
Publicado: (2022)