Cargando…
Algorithm for Training Neural Networks on Resistive Device Arrays
Hardware architectures composed of resistive cross-point device arrays can provide significant power and speed benefits for deep neural network training workloads using stochastic gradient descent (SGD) and backpropagation (BP) algorithm. The training accuracy on this imminent analog hardware, howev...
Autores principales: | Gokmen, Tayfun, Haensch, Wilfried |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054461/ https://www.ncbi.nlm.nih.gov/pubmed/32174807 http://dx.doi.org/10.3389/fnins.2020.00103 |
Ejemplares similares
-
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
por: Gokmen, Tayfun, et al.
Publicado: (2017) -
Training LSTM Networks With Resistive Cross-Point Devices
por: Gokmen, Tayfun, et al.
Publicado: (2018) -
RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
por: Rasch, Malte J., et al.
Publicado: (2019) -
Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations
por: Gokmen, Tayfun, et al.
Publicado: (2016) -
Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm
por: Lee, Chaeun, et al.
Publicado: (2022)