Cargando…
Embracing the dropouts in single-cell RNA-seq analysis
One primary reason that makes single-cell RNA-seq analysis challenging is dropouts, where the data only captures a small fraction of the transcriptome of each cell. Almost all computational algorithms developed for single-cell RNA-seq adopted gene selection, dimension reduction or imputation to addr...
Autor principal: | Qiu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054558/ https://www.ncbi.nlm.nih.gov/pubmed/32127540 http://dx.doi.org/10.1038/s41467-020-14976-9 |
Ejemplares similares
-
scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
por: Li, Yunfan, et al.
Publicado: (2023) -
Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts
por: Zhang, Lihua, et al.
Publicado: (2020) -
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
por: Qi, Jing, et al.
Publicado: (2021)