Cargando…

MiR-26a promotes apoptosis of porcine granulosa cells by targeting the 3β-hydroxysteroid-Δ24-reductase gene

OBJECTIVE: Apoptosis of ovarian granulosa cells (GCs) affects mammalian follicular development and fecundity. This study aimed to explore the regulatory relationship between microRNA-26a (miR-26a) and the 3β-hydroxysteroid-Δ24-reductase gene (DHCR24) gene in porcine follicular granular cells (pGCs),...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaodong, Tao, Qiangqiang, Shang, Jinnan, Xu, Yiliang, Zhang, Liang, Ma, Yingchun, Zhu, Weihua, Yang, Min, Ding, Yueyun, Yin, Zongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054607/
https://www.ncbi.nlm.nih.gov/pubmed/31480202
http://dx.doi.org/10.5713/ajas.19.0173
Descripción
Sumario:OBJECTIVE: Apoptosis of ovarian granulosa cells (GCs) affects mammalian follicular development and fecundity. This study aimed to explore the regulatory relationship between microRNA-26a (miR-26a) and the 3β-hydroxysteroid-Δ24-reductase gene (DHCR24) gene in porcine follicular granular cells (pGCs), and to provide empirical data for the development of methods to improve the reproductive capacity of pigs. METHODS: The pGCs were transfected with miR-26a mimic, miR-26a inhibitor and DHCR24-siRNA in vitro. The cell apoptosis rate of pGCs was detected by the flow cytometry. The secretion levels of estradiol (E2) and progesterone (P) in pGCs were detected by enzyme-linked immunosorbent assay. Double luciferase validation system was used to detect the binding sites between miR-26a and DHCR24 3′-UTR region. Qualitative real-time polymerase chain reaction and Western blotting were used to verify the DHCR24 mRNA and protein expression in pGCs, respectively, after transfecting with miR-26a mimic and miR-26a inhibitor. RESULTS: Results showed that enhancement of miR-26a promoted apoptosis, and inhibited E2 and P secretion in pGCs. Meanwhile, inhibition of DHCR24 also upregulated the Caspase-3 expression, reduced the BCL-2 expression, promoted pGCs apoptosis, and inhibited E2 and P secretion in pGCs. There were the binding sites of miR-26a located within DHCR24 3′-UTR. Up-regulation of miR-26a inhibited DHCR24 mRNA and protein expression in pGCs. CONCLUSION: This study demonstrates that miR-26a can promote cell apoptosis and inhibit E2 and P secretion by inhibiting the expression of DHCR24 in pGCs.