Cargando…

Supplementary prenatal copper increases plasma triiodothyronine and brown adipose tissue uncoupling protein-1 gene expression but depresses thermogenesis in newborn lambs

OBJECTIVE: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. METHODS: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lamb...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Stephen B., Sweatt, Craig R., Carstens, Gordon E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054628/
https://www.ncbi.nlm.nih.gov/pubmed/31208177
http://dx.doi.org/10.5713/ajas.18.0179
Descripción
Sumario:OBJECTIVE: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. METHODS: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6°C) or warm (28°C) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers. RESULTS: Prenatal Cu exposure increased ewe plasma triiodothyronine (T(3)) and thyroxine concentration (T(4)) (p<0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T(3), T(4), glucose, or nonesterified fatty acid concentration (p≥0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p≤0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p≥0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p<0.001), increased BAT cytochrome c oxidase activity (p< 0.01), and depressed plasma fatty acid concentrations (p<0.001). CONCLUSION: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.