Cargando…
The use of biophysical approaches to understand ciliary beating
Motile cilia are a striking example of the functional cellular organelle, conserved across all the eukaryotic species. Motile cilia allow the swimming of cells and small organisms and transport of liquids across epithelial tissues. Whilst the molecular structure is now very well understood, the dyna...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054749/ https://www.ncbi.nlm.nih.gov/pubmed/31922188 http://dx.doi.org/10.1042/BST20190571 |
Sumario: | Motile cilia are a striking example of the functional cellular organelle, conserved across all the eukaryotic species. Motile cilia allow the swimming of cells and small organisms and transport of liquids across epithelial tissues. Whilst the molecular structure is now very well understood, the dynamics of cilia is not well established either at the single cilium level nor at the level of collective beating. Indeed, a full understanding of this requires connecting together behaviour across various lengthscales, from the molecular to the organelle, then at the cellular level and up to the tissue scale. Aside from the fundamental interest in this system, understanding beating is important to elucidate aspects of embryonic development and a variety of health conditions from fertility to genetic and infectious diseases of the airways. |
---|