Cargando…
Machine Learning Analysis of Image Data Based on Detailed MR Image Reports for Nasopharyngeal Carcinoma Prognosis
We aimed to assess the use of automatic machine learning (AutoML) algorithm based on magnetic resonance (MR) image data to assign prediction scores to patients with nasopharyngeal carcinoma (NPC). We also aimed to develop a 4-group classification system for NPC, superior to the current clinical stag...
Autores principales: | Cui, Chunyan, Wang, Shunxin, Zhou, Jian, Dong, Annan, Xie, Fei, Li, Haojiang, Liu, Lizhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054759/ https://www.ncbi.nlm.nih.gov/pubmed/32149139 http://dx.doi.org/10.1155/2020/8068913 |
Ejemplares similares
-
Staging of T2 and T3 nasopharyngeal carcinoma: Proposed modifications for improving the current AJCC staging system
por: Cui, Chunyan, et al.
Publicado: (2020) -
A Collaborative Dictionary Learning Model for Nasopharyngeal Carcinoma Segmentation on Multimodalities MR Sequences
por: Wang, Haiyan, et al.
Publicado: (2020) -
Apparent Diffusion Coefficient in Invasive Ductal Breast Carcinoma: Correlation with Detailed Histologic Features and the Enhancement Ratio on Dynamic Contrast-Enhanced MR Images
por: Matsubayashi, Roka Namoto, et al.
Publicado: (2010) -
A Nomogram for Predicting Distant Metastasis Using Nodal-Related Features Among Patients With Nasopharyngeal Carcinoma
por: Xie, Chuanbo, et al.
Publicado: (2020) -
Value of Diffusion-Weighted MR Imaging for the Detection of Nephritis
por: Henninger, Benjamin, et al.
Publicado: (2013)