Cargando…

Trypsin promotes porcine deltacoronavirus mediating cell-to-cell fusion in a cell type-dependent manner

Porcine deltacoronavirus (PDCoV) is a newly emerging threat to the global porcine industry. PDCoV has been successfully isolated using various medium additives including trypsin, and although we know it is important for viral replication, the mechanism has not been fully elucidated. Here, we systema...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yue-Lin, Meng, Fandan, Qin, Pan, Herrler, Georg, Huang, Yao-Wei, Tang, Yan-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054919/
https://www.ncbi.nlm.nih.gov/pubmed/32090689
http://dx.doi.org/10.1080/22221751.2020.1730245
Descripción
Sumario:Porcine deltacoronavirus (PDCoV) is a newly emerging threat to the global porcine industry. PDCoV has been successfully isolated using various medium additives including trypsin, and although we know it is important for viral replication, the mechanism has not been fully elucidated. Here, we systematically investigated the role of trypsin in PDCoV replication including cell entry, cell-to-cell membrane fusion and virus release. Using pseudovirus entry assays, we demonstrated that PDCoV entry is not trypsin dependent. Furthermore, unlike porcine epidemic diarrhea virus (PEDV), in which trypsin is important for the release of virus from infected cells, PDCoV release was not affected by trypsin. We also demonstrated that trypsin promotes PDCoV replication by enhancing cell-to-cell membrane fusion. Most importantly, our study illustrates two distinct spreading patterns from infected cells to uninfected cells during PDCoV transmission, and the role of trypsin in PDCoV replication in cells with different virus spreading types. Overall, these results clarify that trypsin promotes PDCoV replication by mediating cell-to-cell fusion transmission but is not crucial for viral entry. This knowledge can potentially contribute to improvement of virus production efficiency in culture, not only for vaccine preparation but also to develop antiviral treatments.