Cargando…
A reference library for assigning protein subcellular localizations by image-based machine learning
Confocal micrographs of EGFP fusion proteins localized at key cell organelles in murine and human cells were acquired for use as subcellular localization landmarks. For each of the respective 789,011 and 523,319 optically validated cell images, morphology and statistical features were measured. Mach...
Autores principales: | Schormann, Wiebke, Hariharan, Santosh, Andrews, David W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055006/ https://www.ncbi.nlm.nih.gov/pubmed/31968357 http://dx.doi.org/10.1083/jcb.201904090 |
Ejemplares similares
-
Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches
por: Sahu, Sitanshu S, et al.
Publicado: (2019) -
Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes
por: Kanfer, Gil, et al.
Publicado: (2021) -
High-efficacy subcellular micropatterning of proteins using fibrinogen anchors
por: Watson, Joseph L., et al.
Publicado: (2021) -
CellMap visualizes protein-protein interactions and subcellular localization
por: Dallago, Christian, et al.
Publicado: (2018) -
Defining the subcellular distribution and metabolic channeling of phosphatidylinositol
por: Pemberton, Joshua G., et al.
Publicado: (2020)