Cargando…

αβ-Dehydrocurvularin isolated from the fungus Aspergillus welwitschiae effectively inhibited the behaviour and development of the root-knot nematode Meloidogyne graminicola in rice roots

BACKGROUND: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficac...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Chao, Liu, Ying, Liu, Shi-Ming, Huang, Ya-Fei, Kong, Ling-An, Peng, Huan, Liu, Mao-Yan, Liu, Jing, Peng, De-Liang, Huang, Wen-Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055078/
https://www.ncbi.nlm.nih.gov/pubmed/32126973
http://dx.doi.org/10.1186/s12866-020-01738-2
Descripción
Sumario:BACKGROUND: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions. RESULTS: The active compound αβ-dehydrocurvularin (αβ-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M. graminicola, with a median lethal concentration (LC(50)) value of 122.2 μg mL(− 1). αβ-DC effectively decreased the attraction of rice roots to nematodes and the infection of nematodes and also suppressed the development of nematodes under greenhouse conditions. Moreover, αβ-DC efficiently reduced the root gall index under field conditions. CONCLUSIONS: To our knowledge, this is the first report to describe the nematicidal activity of αβ-DC against M. graminicola. The results obtained under greenhouse and field conditions provide a basis for developing commercial formulations from αβ-DC to control M. graminicola in the future.