Cargando…
Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand
BACKGROUND: The ability to produce timely and accurate estimation of dengue cases can significantly impact disease control programs. A key challenge for dengue control in Thailand is the systematic delay in reporting at different levels in the surveillance system. Efficient and reliable surveillance...
Autores principales: | Rotejanaprasert, Chawarat, Ekapirat, Nattwut, Areechokchai, Darin, Maude, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055098/ https://www.ncbi.nlm.nih.gov/pubmed/32126997 http://dx.doi.org/10.1186/s12942-020-00199-0 |
Ejemplares similares
-
Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2021) -
Spatiotemporal multi-disease transmission dynamic measure for emerging diseases: an application to dengue and zika integrated surveillance in Thailand
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2019) -
Incorporating human mobility data improves forecasts of Dengue fever in Thailand
por: Kiang, Mathew V., et al.
Publicado: (2021) -
Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023) -
Preliminary estimation of temporal and spatiotemporal dynamic measures of COVID-19 transmission in Thailand
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2020)