Cargando…
Absolute Structure from Scanning Electron Microscopy
The absence of centrosymmetry in chiral and polar crystal structures is the reason for many technical relevant physical properties like optical birefringence or ferroelectricity. Other chirality related properties that are actually intensively investigated are unconventional superconductivity or unu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055257/ https://www.ncbi.nlm.nih.gov/pubmed/32132558 http://dx.doi.org/10.1038/s41598-020-59854-y |
Sumario: | The absence of centrosymmetry in chiral and polar crystal structures is the reason for many technical relevant physical properties like optical birefringence or ferroelectricity. Other chirality related properties that are actually intensively investigated are unconventional superconductivity or unusual magnetic ordering like skyrmions in materials with B20 structure. Despite the often close crystal structure - property relation, its detection is often challenging due to superposition of domains with different absolute structure e.g. chirality. Our investigations of high quality CoSi crystals with B20 structure by both complementary methods X- ray (volume sensitive) and electron backscatter diffraction (EBSD) (surface sensitive) results the consistent assignment of the chirality and reveal fundamental differences in their sensitivity to chirality. The analysis of the surface of a CoSi crystal with domains of different chirality show the high spatial resolution of this method which opens the possibility to analyze the chirality in microstructures of technical relevant materials like thin films and catalysts. |
---|