Cargando…

Directed self-assembly of viologen-based 2D semiconductors with intrinsic UV–SWIR photoresponse after photo/thermo activation

Extending photoresponse ranges of semiconductors to the entire ultraviolet–visible (UV)–shortwave near-infrared (SWIR) region (ca. 200–3000 nm) is highly desirable to reduce complexity and cost of photodetectors or to promote power conversion efficiency of solar cells. The observed up limit of photo...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xiao-Qing, Sun, Cai, Liu, Bin-Wen, Wang, Ming-Sheng, Guo, Guo-Cong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055315/
https://www.ncbi.nlm.nih.gov/pubmed/32132532
http://dx.doi.org/10.1038/s41467-020-14986-7
Descripción
Sumario:Extending photoresponse ranges of semiconductors to the entire ultraviolet–visible (UV)–shortwave near-infrared (SWIR) region (ca. 200–3000 nm) is highly desirable to reduce complexity and cost of photodetectors or to promote power conversion efficiency of solar cells. The observed up limit of photoresponse for organic-based semiconductors is about 1800 nm, far from covering the UV–SWIR region. Here we develop a cyanide-bridged layer-directed intercalation approach and obtain a series of two viologen-based 2D semiconductors with multispectral photoresponse. In these compounds, infinitely π-stacked redox-active N-methyl bipyridinium cations with near-planar structures are sandwiched by cyanide-bridged Mn(II)–Fe(III) or Zn(II)–Fe(III) layers. Radical–π interactions among the infinitely π-stacked N-methyl bipyridinium components favor the extension of absorption range. Both semiconductors show light/thermo-induced color change with the formation of stable radicals. They have intrinsic photocurrent response in the range of at least 355–2400 nm, which exceeds all reported values for known single-component organic-based semiconductors.