Cargando…

Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell

Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yong, Shi, Junwei, Zheng, Jianghui, Bing, Jueming, Yuan, Jianyu, Cho, Yongyoon, Tang, Shi, Zhang, Meng, Yao, Yin, Lau, Cho Fai Jonathan, Lee, Da Seul, Liao, Chwenhaw, Green, Martin A., Huang, Shujuan, Ma, Wanli, Ho‐Baillie, Anita W. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055551/
https://www.ncbi.nlm.nih.gov/pubmed/32154088
http://dx.doi.org/10.1002/advs.201903368
_version_ 1783503381861498880
author Li, Yong
Shi, Junwei
Zheng, Jianghui
Bing, Jueming
Yuan, Jianyu
Cho, Yongyoon
Tang, Shi
Zhang, Meng
Yao, Yin
Lau, Cho Fai Jonathan
Lee, Da Seul
Liao, Chwenhaw
Green, Martin A.
Huang, Shujuan
Ma, Wanli
Ho‐Baillie, Anita W. Y.
author_facet Li, Yong
Shi, Junwei
Zheng, Jianghui
Bing, Jueming
Yuan, Jianyu
Cho, Yongyoon
Tang, Shi
Zhang, Meng
Yao, Yin
Lau, Cho Fai Jonathan
Lee, Da Seul
Liao, Chwenhaw
Green, Martin A.
Huang, Shujuan
Ma, Wanli
Ho‐Baillie, Anita W. Y.
author_sort Li, Yong
collection PubMed
description Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI(2) but also generates a passivation effect from the electron‐rich carbonyl group (C=O) in Ac. The best devices produce a PCE of 22.0% for Cs(0.05)FA(0.80)MA(0.15)Pb(I(0.85)Br(0.15))(3) and 23.0% for Cs(0.05)FA(0.90)MA(0.05)Pb(I(0.95)Br(0.05))(3) on 0.159 cm(2) with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
format Online
Article
Text
id pubmed-7055551
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70555512020-03-09 Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell Li, Yong Shi, Junwei Zheng, Jianghui Bing, Jueming Yuan, Jianyu Cho, Yongyoon Tang, Shi Zhang, Meng Yao, Yin Lau, Cho Fai Jonathan Lee, Da Seul Liao, Chwenhaw Green, Martin A. Huang, Shujuan Ma, Wanli Ho‐Baillie, Anita W. Y. Adv Sci (Weinh) Communications Improving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI(2) but also generates a passivation effect from the electron‐rich carbonyl group (C=O) in Ac. The best devices produce a PCE of 22.0% for Cs(0.05)FA(0.80)MA(0.15)Pb(I(0.85)Br(0.15))(3) and 23.0% for Cs(0.05)FA(0.90)MA(0.05)Pb(I(0.95)Br(0.05))(3) on 0.159 cm(2) with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation. John Wiley and Sons Inc. 2020-01-23 /pmc/articles/PMC7055551/ /pubmed/32154088 http://dx.doi.org/10.1002/advs.201903368 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Li, Yong
Shi, Junwei
Zheng, Jianghui
Bing, Jueming
Yuan, Jianyu
Cho, Yongyoon
Tang, Shi
Zhang, Meng
Yao, Yin
Lau, Cho Fai Jonathan
Lee, Da Seul
Liao, Chwenhaw
Green, Martin A.
Huang, Shujuan
Ma, Wanli
Ho‐Baillie, Anita W. Y.
Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title_full Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title_fullStr Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title_full_unstemmed Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title_short Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long‐Term Stable Perovskite Solar Cell
title_sort acetic acid assisted crystallization strategy for high efficiency and long‐term stable perovskite solar cell
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055551/
https://www.ncbi.nlm.nih.gov/pubmed/32154088
http://dx.doi.org/10.1002/advs.201903368
work_keys_str_mv AT liyong aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT shijunwei aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT zhengjianghui aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT bingjueming aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT yuanjianyu aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT choyongyoon aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT tangshi aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT zhangmeng aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT yaoyin aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT lauchofaijonathan aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT leedaseul aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT liaochwenhaw aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT greenmartina aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT huangshujuan aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT mawanli aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell
AT hobaillieanitawy aceticacidassistedcrystallizationstrategyforhighefficiencyandlongtermstableperovskitesolarcell