Cargando…
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
In recent years, machine learning (ML) techniques are seen to be promising tools to discover and design novel materials. However, the lack of robust inverse design approaches to identify promising candidate materials without exploring the entire design space causes a fundamental bottleneck. A genera...
Autores principales: | Chen, Chun‐Teh, Gu, Grace X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055566/ https://www.ncbi.nlm.nih.gov/pubmed/32154072 http://dx.doi.org/10.1002/advs.201902607 |
Ejemplares similares
-
Fractional-Order Deep Backpropagation Neural Network
por: Bao, Chunhui, et al.
Publicado: (2018) -
Deep physical neural networks trained with backpropagation
por: Wright, Logan G., et al.
Publicado: (2022) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Physics‐Informed Deep‐Learning For Elasticity: Forward, Inverse, and Mixed Problems
por: Chen, Chun‐Teh, et al.
Publicado: (2023)