Cargando…
Developing global image feature analysis models to predict cancer risk and prognosis
In order to develop precision or personalized medicine, identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently. Most of these research approaches use the similar concepts of the conve...
Autores principales: | Zheng, Bin, Qiu, Yuchen, Aghaei, Faranak, Mirniaharikandehei, Seyedehnafiseh, Heidari, Morteza, Danala, Gopichandh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055572/ https://www.ncbi.nlm.nih.gov/pubmed/32190407 http://dx.doi.org/10.1186/s42492-019-0026-5 |
Ejemplares similares
-
Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
por: Heidari, Morteza, et al.
Publicado: (2020) -
Developing a Quantitative Ultrasound Image Feature Analysis Scheme to Assess Tumor Treatment Efficacy Using a Mouse Model
por: Mirniaharikandehei, Seyedehnafiseh, et al.
Publicado: (2019) -
A Comparison of Computer-Aided Diagnosis Schemes Optimized Using Radiomics and Deep Transfer Learning Methods
por: Danala, Gopichandh, et al.
Publicado: (2022) -
Automated Quantification of Pneumonia Infected Volume in Lung CT Images: A Comparison with Subjective Assessment of Radiologists
por: Mirniaharikandehei, Seyedehnafiseh, et al.
Publicado: (2023) -
Transient Global Amnesia: Risk Factors, Imaging Features, and Prognosis
por: He, Shunpo, et al.
Publicado: (2021)