Cargando…
Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055573/ https://www.ncbi.nlm.nih.gov/pubmed/32190408 http://dx.doi.org/10.1186/s42492-019-0023-8 |
_version_ | 1783503386950238208 |
---|---|
author | Ma, Ling Lu, Guolan Wang, Dongsheng Qin, Xulei Chen, Zhuo Georgia Fei, Baowei |
author_facet | Ma, Ling Lu, Guolan Wang, Dongsheng Qin, Xulei Chen, Zhuo Georgia Fei, Baowei |
author_sort | Ma, Ling |
collection | PubMed |
description | It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular. |
format | Online Article Text |
id | pubmed-7055573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-70555732020-03-16 Adaptive deep learning for head and neck cancer detection using hyperspectral imaging Ma, Ling Lu, Guolan Wang, Dongsheng Qin, Xulei Chen, Zhuo Georgia Fei, Baowei Vis Comput Ind Biomed Art Original Article It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular. Springer Singapore 2019-11-21 /pmc/articles/PMC7055573/ /pubmed/32190408 http://dx.doi.org/10.1186/s42492-019-0023-8 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Ma, Ling Lu, Guolan Wang, Dongsheng Qin, Xulei Chen, Zhuo Georgia Fei, Baowei Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title_full | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title_fullStr | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title_full_unstemmed | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title_short | Adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
title_sort | adaptive deep learning for head and neck cancer detection using hyperspectral imaging |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055573/ https://www.ncbi.nlm.nih.gov/pubmed/32190408 http://dx.doi.org/10.1186/s42492-019-0023-8 |
work_keys_str_mv | AT maling adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging AT luguolan adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging AT wangdongsheng adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging AT qinxulei adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging AT chenzhuogeorgia adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging AT feibaowei adaptivedeeplearningforheadandneckcancerdetectionusinghyperspectralimaging |