Cargando…
Longitudinal Risk Prediction of Chronic Kidney Disease in Diabetic Patients Using a Temporal-Enhanced Gradient Boosting Machine: Retrospective Cohort Study
BACKGROUND: Artificial intelligence–enabled electronic health record (EHR) analysis can revolutionize medical practice from the diagnosis and prediction of complex diseases to making recommendations in patient care, especially for chronic conditions such as chronic kidney disease (CKD), which is one...
Autores principales: | Song, Xing, Waitman, Lemuel R, Yu, Alan SL, Robbins, David C, Hu, Yong, Liu, Mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055762/ https://www.ncbi.nlm.nih.gov/pubmed/32012067 http://dx.doi.org/10.2196/15510 |
Ejemplares similares
-
Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study
por: Wu, Lijuan, et al.
Publicado: (2020) -
Gradient boosting machines, a tutorial
por: Natekin, Alexey, et al.
Publicado: (2013) -
Integrating Medication Alert Data into a Clinical Data Repository to Enable Retrospective Study of Drug Interaction Alerts in Clinical Practice
por: Liu, Mei, et al.
Publicado: (2017) -
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
por: Song, Xing, et al.
Publicado: (2020) -
Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records
por: He, Jianqin, et al.
Publicado: (2018)