Cargando…

Mitotic functions of poly(ADP-ribose) polymerases

Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (...

Descripción completa

Detalles Bibliográficos
Autor principal: Slade, Dea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056360/
https://www.ncbi.nlm.nih.gov/pubmed/30910692
http://dx.doi.org/10.1016/j.bcp.2019.03.028
Descripción
Sumario:Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.