Cargando…

MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells

Hyperglycemia-induced renal tubular cell injury is thought to play a critical role in the pathogenesis of diabetic nephropathy (DN). However, the role of miRNAs in renal tubular cell injury remains to be fully elucidated. The aim of the present study was to investigate the role and mechanisms of miR...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Jie, Ren, Jian, Chen, Haiyan, Liu, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056448/
https://www.ncbi.nlm.nih.gov/pubmed/32073611
http://dx.doi.org/10.1042/BSR20192384
Descripción
Sumario:Hyperglycemia-induced renal tubular cell injury is thought to play a critical role in the pathogenesis of diabetic nephropathy (DN). However, the role of miRNAs in renal tubular cell injury remains to be fully elucidated. The aim of the present study was to investigate the role and mechanisms of miRNAs protecting against high glucose (HG)-induced apoptosis and inflammation in renal tubular cells. First, we analyzed microRNA (miRNA) expression profiles in kidney tissues from DN patients using miRNA microarray. It was observed that miRNA-140-5p (miR-140-5p) was significantly down-regulated in kidney tissues from patients with DN. An inverse correlation between miR-140-5p expression levels with serum proteinuria was observed in DN patients, suggesting miR-140-5p may be involved in the progression of DN. HG-induced injury in HK-2 cells was used to explore the potential role of miR-140-5p in DN. We found that miR-140-5p overexpression improved HG-induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase-3 and reactive oxygen species (ROS) generation. It was also observed that up-regulation of miR-140-5p suppressed HG induced the expressions of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in HK-2 cells. In addition, TLR4, one of the upstream molecules of NF-κB signaling pathway, was found to be a direct target of miR-140-5p in the HK-2. Moreover, the HG-induced activation of NF-κB signaling pathway was inhibited by miR-140-5p overexpression. These results indicated that miR-140-5p protected HK-2 cells against HG-induced injury through blocking the TLR4/NF-κB pathway, and miR-140-5p may be considered as a potential prognostic biomarker and therapeutic target in the treatment of DN.