Cargando…
Exosome miR-155 Derived from Gastric Carcinoma Promotes Angiogenesis by Targeting the c-MYB/VEGF Axis of Endothelial Cells
Exosomes, membranous nanovesicles, naturally carry proteins, mRNAs, and microRNAs (miRNAs) and play important roles in tumor pathogenesis. Here we showed that gastric cancer (GC) cell-derived exosomes can function as vehicles to deliver miR-155 to promote angiogenesis in GC. In this study, we first...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056628/ https://www.ncbi.nlm.nih.gov/pubmed/32160713 http://dx.doi.org/10.1016/j.omtn.2020.01.024 |
Sumario: | Exosomes, membranous nanovesicles, naturally carry proteins, mRNAs, and microRNAs (miRNAs) and play important roles in tumor pathogenesis. Here we showed that gastric cancer (GC) cell-derived exosomes can function as vehicles to deliver miR-155 to promote angiogenesis in GC. In this study, we first detected that the expression of miR-155 and c-MYB was negatively correlated in GC and that c-MYB was a direct target of miR-155. We next characterized the promotional effect of exosome-delivered miR-155 on angiogenesis and tumor growth in GC. We found that miR-155 could inhibit c-MYB but increase vascular endothelial growth factor (VEGF) expression and promote growth, metastasis, and tube formation of vascular cells, causing the occurrence and development of tumors. We also used a tumor implantation mouse model to show that exosomes containing miR-155 significantly augment the growth rate of the vasculature and tumors in vivo. Our results illustrate the potential mechanism between miR-155 and angiogenesis in GC. These findings contribute to our understanding of the function of miR-155 and exosomes for GC therapy. |
---|