Cargando…
I3: A Self-organising Learning Workflow for Intuitive Integrative Interpretation of Complex Genetic Data
We propose a computational workflow (I3) for intuitive integrative interpretation of complex genetic data mainly building on the self-organising principle. We illustrate the use in interpreting genetics of gene expression and understanding genetic regulators of protein phenotypes, particularly in co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056857/ https://www.ncbi.nlm.nih.gov/pubmed/31765831 http://dx.doi.org/10.1016/j.gpb.2018.10.006 |
Sumario: | We propose a computational workflow (I3) for intuitive integrative interpretation of complex genetic data mainly building on the self-organising principle. We illustrate the use in interpreting genetics of gene expression and understanding genetic regulators of protein phenotypes, particularly in conjunction with information from human population genetics and/or evolutionary history of human genes. We reveal that loss-of-function intolerant genes tend to be depleted of tissue-sharing genetics of gene expression in brains, and if highly expressed, have broad effects on the protein phenotypes studied. We suggest that this workflow presents a general solution to the challenge of complex genetic data interpretation. I3 is available at http://suprahex.r-forge.r-project.org/I3.html. |
---|