Cargando…
Assessment of Mixed Sward Using Context Sensitive Convolutional Neural Networks
Breeding higher yielding forage species is limited by current manual harvesting and visual scoring techniques used for measuring or estimation of biomass. Automation and remote sensing for high throughput phenotyping has been used in recent years as a viable solution to this bottleneck. Here, we foc...
Autores principales: | Bateman, Christopher J., Fourie, Jaco, Hsiao, Jeffrey, Irie, Kenji, Heslop, Angus, Hilditch, Anthony, Hagedorn, Michael, Jessep, Bruce, Gebbie, Steve, Ghamkhar, Kioumars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056886/ https://www.ncbi.nlm.nih.gov/pubmed/32174941 http://dx.doi.org/10.3389/fpls.2020.00159 |
Ejemplares similares
-
Real-time, non-destructive and in-field foliage yield and growth rate measurement in perennial ryegrass (Lolium perenne L.)
por: Ghamkhar, Kioumars, et al.
Publicado: (2019) -
Editorial: Convolutional neural networks and deep learning for crop improvement and production
por: Yang, Wanneng, et al.
Publicado: (2022) -
Convolutional Neural Network Models Help Effectively Estimate Legume Coverage in Grass-Legume Mixed Swards
por: Fujiwara, Ryo, et al.
Publicado: (2022) -
Identification of Weeds Based on Hyperspectral Imaging and Machine Learning
por: Li, Yanjie, et al.
Publicado: (2021) -
Editorial: Spectroscopy for crop and product phenotyping
por: Kalendar, Ruslan, et al.
Publicado: (2022)