Cargando…
DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization
The ability to predict the drug response for cancer disease based on genomics information is an essential problem in modern oncology, leading to personalized treatment. By predicting accurate anticancer responses, oncologists achieve a complete understanding of the effective treatment for each patie...
Autores principales: | Emdadi, Akram, Eslahchi, Changiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056895/ https://www.ncbi.nlm.nih.gov/pubmed/32174963 http://dx.doi.org/10.3389/fgene.2020.00075 |
Ejemplares similares
-
Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model
por: Emdadi, Akram, et al.
Publicado: (2021) -
A novel algorithm for parameter estimation of Hidden Markov Model inspired by Ant Colony Optimization
por: Emdadi, Akram, et al.
Publicado: (2019) -
Classifying Breast Cancer Molecular Subtypes by Using Deep Clustering Approach
por: Rohani, Narjes, et al.
Publicado: (2020) -
IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-Protein Interaction Prediction
por: Zhao, Qi, et al.
Publicado: (2018) -
A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information
por: Ahmadi Moughari, Fatemeh, et al.
Publicado: (2021)