Cargando…
DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
Accurate identification of compound–protein interactions (CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development. Conventional similarity- or docking-based computational methods for predicting CPIs rarely...
Autores principales: | Wan, Fangping, Zhu, Yue, Hu, Hailin, Dai, Antao, Cai, Xiaoqing, Chen, Ligong, Gong, Haipeng, Xia, Tian, Yang, Dehua, Wang, Ming-Wei, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056933/ https://www.ncbi.nlm.nih.gov/pubmed/32035227 http://dx.doi.org/10.1016/j.gpb.2019.04.003 |
Ejemplares similares
-
A deep learning framework for modeling structural features of RNA-binding protein targets
por: Zhang, Sai, et al.
Publicado: (2016) -
A deep-learning framework for multi-level peptide–protein interaction prediction
por: Lei, Yipin, et al.
Publicado: (2021) -
SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning
por: Wang, Xun, et al.
Publicado: (2022) -
TITER: predicting translation initiation sites by deep learning
por: Zhang, Sai, et al.
Publicado: (2017) -
DeepShape: estimating isoform-level ribosome abundance and distribution with Ribo-seq data
por: Cui, Hongfei, et al.
Publicado: (2019)