Cargando…

Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects

In this study, antibacterial, antioxidant, and anticancer effects of Cu nanoparticles (CuNPs) fixed on cellulosic walnut shell material were investigated. Firstly, three types of walnut shell-supported copper nanoparticles with various sizes (CuNP-WS1 15–22 nm, CuNP-WS2 60–80 nm and, CuNP-WS3 aggreg...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehdizadeh, Tooraj, Zamani, Asghar, Abtahi Froushani, Seyyed Meysam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057200/
https://www.ncbi.nlm.nih.gov/pubmed/32154429
http://dx.doi.org/10.1016/j.heliyon.2020.e03528
Descripción
Sumario:In this study, antibacterial, antioxidant, and anticancer effects of Cu nanoparticles (CuNPs) fixed on cellulosic walnut shell material were investigated. Firstly, three types of walnut shell-supported copper nanoparticles with various sizes (CuNP-WS1 15–22 nm, CuNP-WS2 60–80 nm and, CuNP-WS3 aggregated of metallic nanoparticles) were synthesized. Antibacterial properties of CuNPs were studied on three strains of bacteria; Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes. DPPH (1, 1-Diphenyl-2-picrylhydrazyl) method was used to examining antioxidant properties. Cytotoxic effects of the synthesized nanoparticles on the cancer cell line were studied. Antimicrobial properties of CuNPs showed that these nanomaterials affect both Gram-positive and Gram-negative bacteria. The antioxidant properties of CuNPs increased significantly by increasing the concentration to 10%. CuNPs appeared to have a dose-dependent cytotoxic effect on K562 cells. However, the IC50 of the synthesized nanoparticles against the K562 (25.24 ± 5 μg/mL) cancer cells was lower significantly (P < 0.01) of the IC50 of these compounds against PBMCs (42.54 ± 6.2 μg/mL).