Cargando…
Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads
[Image: see text] Over the past decade, the available crystal structures have almost doubled in Protein Data Bank (PDB) providing the research community with a series of similar crystal structures to choose from for future docking studies. With the steady growth in the number of high-resolution thre...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057334/ https://www.ncbi.nlm.nih.gov/pubmed/32149224 http://dx.doi.org/10.1021/acsomega.9b03458 |
_version_ | 1783503634685755392 |
---|---|
author | Sailapathi, Ananthasri Murugan, Gopinath Somarathinam, Kanagasabai Gunalan, Seshan Jagadeesan, Rahul Yoosuf, Niyaz Kanagaraj, Sekar Kothandan, Gugan |
author_facet | Sailapathi, Ananthasri Murugan, Gopinath Somarathinam, Kanagasabai Gunalan, Seshan Jagadeesan, Rahul Yoosuf, Niyaz Kanagaraj, Sekar Kothandan, Gugan |
author_sort | Sailapathi, Ananthasri |
collection | PubMed |
description | [Image: see text] Over the past decade, the available crystal structures have almost doubled in Protein Data Bank (PDB) providing the research community with a series of similar crystal structures to choose from for future docking studies. With the steady growth in the number of high-resolution three-dimensional protein structures, ligand docking-based virtual screening of chemical libraries to a receptor plays a critical role in the drug discovery process by identifying new drug candidates. Thus, identifying potential candidates among all the available structures in a database for docking studies is of utmost importance. Our work examined whether one could use the resolution of a number of known structures, without considering other parameters, to choose a good experimental structure for various docking studies to find more useful drug leads. We expected that a good experimental structure for docking studies to be the one that gave favorable docking with the largest number of ligands among the experimental structures to be selected. We chose three protein test systems for our study, all belonging to the family of MAPK: (1) JNK1, (2) JNK2, and (3) JNK3. On analysis of the results, the best resolution structures showed significant variations from the expected values in their result, whereas the poor resolution structures proved to be better candidates for docking studies. |
format | Online Article Text |
id | pubmed-7057334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70573342020-03-06 Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads Sailapathi, Ananthasri Murugan, Gopinath Somarathinam, Kanagasabai Gunalan, Seshan Jagadeesan, Rahul Yoosuf, Niyaz Kanagaraj, Sekar Kothandan, Gugan ACS Omega [Image: see text] Over the past decade, the available crystal structures have almost doubled in Protein Data Bank (PDB) providing the research community with a series of similar crystal structures to choose from for future docking studies. With the steady growth in the number of high-resolution three-dimensional protein structures, ligand docking-based virtual screening of chemical libraries to a receptor plays a critical role in the drug discovery process by identifying new drug candidates. Thus, identifying potential candidates among all the available structures in a database for docking studies is of utmost importance. Our work examined whether one could use the resolution of a number of known structures, without considering other parameters, to choose a good experimental structure for various docking studies to find more useful drug leads. We expected that a good experimental structure for docking studies to be the one that gave favorable docking with the largest number of ligands among the experimental structures to be selected. We chose three protein test systems for our study, all belonging to the family of MAPK: (1) JNK1, (2) JNK2, and (3) JNK3. On analysis of the results, the best resolution structures showed significant variations from the expected values in their result, whereas the poor resolution structures proved to be better candidates for docking studies. American Chemical Society 2020-02-21 /pmc/articles/PMC7057334/ /pubmed/32149224 http://dx.doi.org/10.1021/acsomega.9b03458 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Sailapathi, Ananthasri Murugan, Gopinath Somarathinam, Kanagasabai Gunalan, Seshan Jagadeesan, Rahul Yoosuf, Niyaz Kanagaraj, Sekar Kothandan, Gugan Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title | Proposing the Promiscuous Protein Structures in JNK1
and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title_full | Proposing the Promiscuous Protein Structures in JNK1
and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title_fullStr | Proposing the Promiscuous Protein Structures in JNK1
and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title_full_unstemmed | Proposing the Promiscuous Protein Structures in JNK1
and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title_short | Proposing the Promiscuous Protein Structures in JNK1
and JNK3 for Virtual Screening in Pursuit of Potential Leads |
title_sort | proposing the promiscuous protein structures in jnk1
and jnk3 for virtual screening in pursuit of potential leads |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057334/ https://www.ncbi.nlm.nih.gov/pubmed/32149224 http://dx.doi.org/10.1021/acsomega.9b03458 |
work_keys_str_mv | AT sailapathiananthasri proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT murugangopinath proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT somarathinamkanagasabai proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT gunalanseshan proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT jagadeesanrahul proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT yoosufniyaz proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT kanagarajsekar proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads AT kothandangugan proposingthepromiscuousproteinstructuresinjnk1andjnk3forvirtualscreeninginpursuitofpotentialleads |