Cargando…
Pulmonary vasodilation in acute pulmonary embolism – a systematic review
Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ventricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the mechanical obstruction caused by the embolism, bu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057411/ https://www.ncbi.nlm.nih.gov/pubmed/32180938 http://dx.doi.org/10.1177/2045894019899775 |
_version_ | 1783503649254670336 |
---|---|
author | Lyhne, Mads Dam Kline, Jeffrey Allen Nielsen-Kudsk, Jens Erik Andersen, Asger |
author_facet | Lyhne, Mads Dam Kline, Jeffrey Allen Nielsen-Kudsk, Jens Erik Andersen, Asger |
author_sort | Lyhne, Mads Dam |
collection | PubMed |
description | Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ventricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the mechanical obstruction caused by the embolism, but pulmonary vasoconstriction is a significant contributor to the increased right ventricular afterload and is often left untreated. Pulmonary thromboembolism causes mechanical obstruction of the pulmonary vasculature coupled with a complex interaction between humoral factors from the activated platelets, endothelial effects, reflexes and hypoxia to cause pulmonary vasoconstriction that worsens right ventricular afterload. Vasoconstrictors include serotonin, thromboxane, prostaglandins and endothelins, counterbalanced by vasodilators such as nitric oxide and prostacyclins. Exogenous administration of pulmonary vasodilators in acute pulmonary embolism seems attractive but all come with a risk of systemic vasodilation or worsening of pulmonary ventilation-perfusion mismatch. In animal models of acute pulmonary embolism, modulators of the nitric oxide-cyclic guanosine monophosphate-protein kinase G pathway, endothelin pathway and prostaglandin pathway have been investigated. But only a small number of clinical case reports and prospective clinical trials exist. The aim of this review is to give an overview of the causes of pulmonary embolism-induced pulmonary vasoconstriction and of experimental and human investigations of pulmonary vasodilation in acute pulmonary embolism. |
format | Online Article Text |
id | pubmed-7057411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-70574112020-03-16 Pulmonary vasodilation in acute pulmonary embolism – a systematic review Lyhne, Mads Dam Kline, Jeffrey Allen Nielsen-Kudsk, Jens Erik Andersen, Asger Pulm Circ Review Article Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ventricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the mechanical obstruction caused by the embolism, but pulmonary vasoconstriction is a significant contributor to the increased right ventricular afterload and is often left untreated. Pulmonary thromboembolism causes mechanical obstruction of the pulmonary vasculature coupled with a complex interaction between humoral factors from the activated platelets, endothelial effects, reflexes and hypoxia to cause pulmonary vasoconstriction that worsens right ventricular afterload. Vasoconstrictors include serotonin, thromboxane, prostaglandins and endothelins, counterbalanced by vasodilators such as nitric oxide and prostacyclins. Exogenous administration of pulmonary vasodilators in acute pulmonary embolism seems attractive but all come with a risk of systemic vasodilation or worsening of pulmonary ventilation-perfusion mismatch. In animal models of acute pulmonary embolism, modulators of the nitric oxide-cyclic guanosine monophosphate-protein kinase G pathway, endothelin pathway and prostaglandin pathway have been investigated. But only a small number of clinical case reports and prospective clinical trials exist. The aim of this review is to give an overview of the causes of pulmonary embolism-induced pulmonary vasoconstriction and of experimental and human investigations of pulmonary vasodilation in acute pulmonary embolism. SAGE Publications 2020-03-04 /pmc/articles/PMC7057411/ /pubmed/32180938 http://dx.doi.org/10.1177/2045894019899775 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Review Article Lyhne, Mads Dam Kline, Jeffrey Allen Nielsen-Kudsk, Jens Erik Andersen, Asger Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title | Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title_full | Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title_fullStr | Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title_full_unstemmed | Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title_short | Pulmonary vasodilation in acute pulmonary embolism – a systematic review |
title_sort | pulmonary vasodilation in acute pulmonary embolism – a systematic review |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057411/ https://www.ncbi.nlm.nih.gov/pubmed/32180938 http://dx.doi.org/10.1177/2045894019899775 |
work_keys_str_mv | AT lyhnemadsdam pulmonaryvasodilationinacutepulmonaryembolismasystematicreview AT klinejeffreyallen pulmonaryvasodilationinacutepulmonaryembolismasystematicreview AT nielsenkudskjenserik pulmonaryvasodilationinacutepulmonaryembolismasystematicreview AT andersenasger pulmonaryvasodilationinacutepulmonaryembolismasystematicreview |