Cargando…
InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining
BACKGROUND: Genomic inversion is one type of structural variations (SVs) and is known to play an important biological role. An established problem in sequence data analysis is calling inversions from high-throughput sequence data. It is more difficult to detect inversions because they are surrounded...
Autores principales: | Wu, Zhongjia, Wu, Yufeng, Gao, Jingyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057458/ https://www.ncbi.nlm.nih.gov/pubmed/32138660 http://dx.doi.org/10.1186/s12864-020-6585-1 |
Ejemplares similares
-
npInv: accurate detection and genotyping of inversions using long read sub-alignment
por: Shao, Haojing, et al.
Publicado: (2018) -
Detecting genomic deletions from high-throughput sequence data with unsupervised learning
por: Li, Xin, et al.
Publicado: (2023) -
Detecting circular RNA from high-throughput sequence data with de Bruijn graph
por: Li, Xin, et al.
Publicado: (2020) -
Pericentric inversion (Inv) 9 variant—reproductive risk factor or benign finding?
por: Merrion, Katrina, et al.
Publicado: (2019) -
scoreInvHap: Inversion genotyping for genome-wide association studies
por: Ruiz-Arenas, Carlos, et al.
Publicado: (2019)