Cargando…

Lignin-Based Pesticide Delivery System

[Image: see text] The potential of lignosulfonates as widely underutilized byproducts of the pulp and paper industry for the synthesis of a biodegradable pesticide carrier system was assessed in this study. Design of experiment software MODDE Pro was for the first time applied to optimize lignosulfo...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiss, Renate, Ghitti, Elisa, Sumetzberger-Hasinger, Marion, Guebitz, Georg M., Nyanhongo, Gibson S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057692/
https://www.ncbi.nlm.nih.gov/pubmed/32149262
http://dx.doi.org/10.1021/acsomega.9b04275
Descripción
Sumario:[Image: see text] The potential of lignosulfonates as widely underutilized byproducts of the pulp and paper industry for the synthesis of a biodegradable pesticide carrier system was assessed in this study. Design of experiment software MODDE Pro was for the first time applied to optimize lignosulfonate granule production using Myceliophthora thermophila laccase as a biocatalyst. Enzymatic cross-linking was monitored using size exclusion chromatography coupled online to multiangle laser light scattering, viscosity measurement, and enzyme activity. The determined optimal and experimentally confirmed incubation conditions were: 33 °C, 30 cm(3)/min O(2) supply, and 190 min reaction time. The granules were thereafter loaded with 2 g/kg 3,6-dichloro-2-methoxybenzoic acid (Dicamba), a broad-spectrum herbicide. According to the HPLC analysis, complete release of Dicamba was achieved after 48 h of release. This study showed the green production of a 100% lignosulfonate-based biodegradable solid carrier with potential application in agriculture.