Cargando…
The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates
The recombination activating gene (RAG or RAG1/RAG2 complex)-mediated adaptive immune system is a hallmark of jawed vertebrates. It has been reported that RAG originated in invertebrates. However, whether RAG further evolved once it arose in jawed vertebrates remains largely unknown. Here, we found...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057966/ https://www.ncbi.nlm.nih.gov/pubmed/32139788 http://dx.doi.org/10.1038/s41598-020-61019-w |
Sumario: | The recombination activating gene (RAG or RAG1/RAG2 complex)-mediated adaptive immune system is a hallmark of jawed vertebrates. It has been reported that RAG originated in invertebrates. However, whether RAG further evolved once it arose in jawed vertebrates remains largely unknown. Here, we found that zebrafish RAG (zRAG) had a lower activity than mouse RAG (mRAG). Intriguingly, the attenuated stability of zebrafish RAG2 (zRAG2), but not zebrafish RAG1, caused the reduced V(D)J recombination efficiency compared to mRAG at 37 °C which are the body temperature of most endotherms except birds. Importantly, the lower temperature 28 °C, which is the best temperature for zebrafish growth, made the recombination efficiency of zRAG similar to that of mRAG by improving the stability of zRAG2. Consistent with the prementioned observation, the V(D)J recombination of Rag2(KI/KI) mice, which zRAG2 was substituted for mRAG2, was also severely impaired. Unexpectedly, Rag2(KI/KI) mice developed cachexia syndromes accompanied by premature death. Taken together, our findings illustrate that the evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. |
---|