Cargando…
A pilot trial of Convolution Neural Network for automatic retention-monitoring of capsule endoscopes in the stomach and duodenal bulb
The retention of a capsule endoscope (CE) in the stomach and the duodenal bulb during the examination is a troublesome problem, which can make the medical staff spend several hours observing whether the CE enters the descending segment of the duodenum (DSD). This paper investigated and evaluated the...
Autores principales: | Gan, Tao, Liu, Shuaicheng, Yang, Jinlin, Zeng, Bing, Yang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057987/ https://www.ncbi.nlm.nih.gov/pubmed/32139758 http://dx.doi.org/10.1038/s41598-020-60969-5 |
Ejemplares similares
-
Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network
por: Gan, Tao, et al.
Publicado: (2021) -
Retention of an endoscopic capsule
por: Bakhshi, Girish D, et al.
Publicado: (2014) -
Anomalous opening of the common bile duct into the duodenal bulb: endoscopic treatment
por: Disibeyaz, Selcuk, et al.
Publicado: (2007) -
Body Position Adjustment May Facilitate Capsule Endoscopic Real-Time Examination in Patients with a Large Amount of Food Retention in the Stomach
por: Gou, Ju-Hua, et al.
Publicado: (2014) -
The potential for clinical application of automatic quantification of olfactory bulb volume in MRI scans using convolutional neural networks
por: Postma, Elbrich M., et al.
Publicado: (2023)