Cargando…
A radiomics model to predict the invasiveness of thymic epithelial tumors based on contrast-enhanced computed tomography
In the present study, we aimed to construct a radiomics model using contrast-enhanced computed tomography (CT) to predict the pathological invasiveness of thymic epithelial tumors (TETs). We retrospectively reviewed the records of 179 consecutive patients (89 females) with histologically confirmed T...
Autores principales: | Chen, Xiangmeng, Feng, Bao, Li, Changlin, Duan, Xiaobei, Chen, Yehang, Li, Zhi, Liu, Zhuangsheng, Zhang, Chaotong, Long, Wansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057988/ https://www.ncbi.nlm.nih.gov/pubmed/32323834 http://dx.doi.org/10.3892/or.2020.7497 |
Ejemplares similares
-
A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules
por: Chen, Xiangmeng, et al.
Publicado: (2020) -
Predicting lymphovascular invasion in clinically node-negative breast cancer detected by abbreviated magnetic resonance imaging: Transfer learning vs. radiomics
por: Feng, Bao, et al.
Publicado: (2022) -
Computed Tomography-Based Radiomics Nomogram: Potential to Predict Local Recurrence of Gastric Cancer After Radical Resection
por: Huang, Liebin, et al.
Publicado: (2021) -
Segmentation of small ground glass opacity pulmonary nodules based on Markov random field energy and Bayesian probability difference
por: Zhang, Shaorong, et al.
Publicado: (2020) -
A brain-like classification method for computed tomography images based on adaptive feature matching dual-source domain heterogeneous transfer learning
por: Chen, Yehang, et al.
Publicado: (2022)