Cargando…
Classification models for Invasive Ductal Carcinoma Progression, based on gene expression data-trained supervised machine learning
Early detection of breast cancer and its correct stage determination are important for prognosis and rendering appropriate personalized clinical treatment to breast cancer patients. However, despite considerable efforts and progress, there is a need to identify the specific genomic factors responsib...
Autores principales: | Roy, Shikha, Kumar, Rakesh, Mittal, Vaibhav, Gupta, Dinesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057992/ https://www.ncbi.nlm.nih.gov/pubmed/32139710 http://dx.doi.org/10.1038/s41598-020-60740-w |
Ejemplares similares
-
Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms
por: Jagga, Zeenia, et al.
Publicado: (2014) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Kanavati, Fahdi, et al.
Publicado: (2021) -
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Supervised machine learning aided behavior classification in pigeons
por: Wittek, Neslihan, et al.
Publicado: (2022) -
Unsupervised subtyping and methylation landscape of pancreatic ductal adenocarcinoma
por: Roy, Shikha, et al.
Publicado: (2021)