Cargando…
Costs of exploratory behavior: the energy trade-off hypothesis and the allocation model tested under caloric restriction
In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058060/ https://www.ncbi.nlm.nih.gov/pubmed/32139739 http://dx.doi.org/10.1038/s41598-020-61102-2 |
Sumario: | In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability. |
---|