Cargando…

Simultaneous and extensive removal of the East Asian lithospheric root

Much evidence points to a dramatic thinning of East Asian lithosphere during the Mesozoic, but with little precision on when, or over what time scale. Using geochemical constraints, we examine an extensive compilation of dated volcanic samples from Russia, Mongolia and North China to determine when...

Descripción completa

Detalles Bibliográficos
Autores principales: Sheldrick, Thomas C., Barry, Tiffany L., Dash, Batulzii, Gan, Chengshi, Millar, Ian L., Barfod, Dan N., Halton, Alison M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058094/
https://www.ncbi.nlm.nih.gov/pubmed/32139759
http://dx.doi.org/10.1038/s41598-020-60925-3
Descripción
Sumario:Much evidence points to a dramatic thinning of East Asian lithosphere during the Mesozoic, but with little precision on when, or over what time scale. Using geochemical constraints, we examine an extensive compilation of dated volcanic samples from Russia, Mongolia and North China to determine when the lithosphere thinned and how long that process took. Geochemical results suggest that magmatism before 107 Ma derived from metasomatised subcontinental lithospheric mantle (SCLM), whereas after 107 Ma, melt predominantly derived from an asthenospheric source. The switch to an asthenospheric magma source at ~107 Ma occurred in both Mongolia and North China (>1600 km apart), whereas in eastern Russia the switch occurred a little later (~85 Ma). Such a dramatic change to an asthenospheric contribution appears to have taken, from beginning to end, just ~30 Myrs, suggesting this is the duration for lithospheric mantle weakening and removal. Subsequent volcanism, through the Cenozoic in Mongolia and North China does not appear to include any contribution from the removed SCLM, despite melts predominantly deriving from the asthenosphere.