Cargando…
Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model
BACKGROUND: Extracorporeally induced whole‐body hyperthermia (eWBH) might be a beneficial treatment in cancer patients. Objectives of this pig study were to assess thermal distribution, (patho‐)physiological effects, and safety of eWBH with a new WBH device. METHODS: Fourteen healthy adult pigs were...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058172/ https://www.ncbi.nlm.nih.gov/pubmed/32097540 http://dx.doi.org/10.14814/phy2.14366 |
_version_ | 1783503813149196288 |
---|---|
author | Lassche, Gerben Frenzel, Tim Mignot, Marcel H. Jonker, Marianne A. van der Hoeven, Johannes G. van Herpen, Carla M. L. Scheffer, Gert Jan |
author_facet | Lassche, Gerben Frenzel, Tim Mignot, Marcel H. Jonker, Marianne A. van der Hoeven, Johannes G. van Herpen, Carla M. L. Scheffer, Gert Jan |
author_sort | Lassche, Gerben |
collection | PubMed |
description | BACKGROUND: Extracorporeally induced whole‐body hyperthermia (eWBH) might be a beneficial treatment in cancer patients. Objectives of this pig study were to assess thermal distribution, (patho‐)physiological effects, and safety of eWBH with a new WBH device. METHODS: Fourteen healthy adult pigs were anesthetized, mechanically ventilated, and cannulated; 12 were included in the analysis. Blood was heated in 11 pigs (one pig served as control) using a WBH device (Vithèr Hyperthermia B.V.) containing two separate fluidic circuits and a heat exchanger. Temperature was monitored on nine different sites, including the brain. Core temperature (average of 4 deep probes) was elevated to 42°C for 2 hr. RESULTS: Elevation of core body temperature to 42°C took on average (± standard deviation) 38 ± 8 min. Initially observed temperature spikes diminished after lowering maximal blood temperature to 45°C. Hereafter, brain temperature spikes never exceeded 42.5°C, mean brain temperature was at highest 41.9°C during maintenance. WBH resulted in increased heart rates and decreased mean arterial pressures. The vast amounts of fluids required to counter hypotension tended to be smaller after corticosteroid administration. Hemodialysis was started in three animals (potassium increase prevention in two and hyperkalemia treatment in one). Severe rhabdomyolysis was observed in all pigs (including the control). All animals survived the procedure until planned euthanasia 1, 6, or 24 hr post procedure. CONCLUSION: Fast induction of eWBH with homogenous thermal distribution is feasible in pigs using the Vithèr WBH device. Severe hemodynamic disturbances, rhabdomyolysis, and hyperkalemia were observed. |
format | Online Article Text |
id | pubmed-7058172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70581722020-03-12 Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model Lassche, Gerben Frenzel, Tim Mignot, Marcel H. Jonker, Marianne A. van der Hoeven, Johannes G. van Herpen, Carla M. L. Scheffer, Gert Jan Physiol Rep Original Research BACKGROUND: Extracorporeally induced whole‐body hyperthermia (eWBH) might be a beneficial treatment in cancer patients. Objectives of this pig study were to assess thermal distribution, (patho‐)physiological effects, and safety of eWBH with a new WBH device. METHODS: Fourteen healthy adult pigs were anesthetized, mechanically ventilated, and cannulated; 12 were included in the analysis. Blood was heated in 11 pigs (one pig served as control) using a WBH device (Vithèr Hyperthermia B.V.) containing two separate fluidic circuits and a heat exchanger. Temperature was monitored on nine different sites, including the brain. Core temperature (average of 4 deep probes) was elevated to 42°C for 2 hr. RESULTS: Elevation of core body temperature to 42°C took on average (± standard deviation) 38 ± 8 min. Initially observed temperature spikes diminished after lowering maximal blood temperature to 45°C. Hereafter, brain temperature spikes never exceeded 42.5°C, mean brain temperature was at highest 41.9°C during maintenance. WBH resulted in increased heart rates and decreased mean arterial pressures. The vast amounts of fluids required to counter hypotension tended to be smaller after corticosteroid administration. Hemodialysis was started in three animals (potassium increase prevention in two and hyperkalemia treatment in one). Severe rhabdomyolysis was observed in all pigs (including the control). All animals survived the procedure until planned euthanasia 1, 6, or 24 hr post procedure. CONCLUSION: Fast induction of eWBH with homogenous thermal distribution is feasible in pigs using the Vithèr WBH device. Severe hemodynamic disturbances, rhabdomyolysis, and hyperkalemia were observed. John Wiley and Sons Inc. 2020-02-25 /pmc/articles/PMC7058172/ /pubmed/32097540 http://dx.doi.org/10.14814/phy2.14366 Text en © 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Lassche, Gerben Frenzel, Tim Mignot, Marcel H. Jonker, Marianne A. van der Hoeven, Johannes G. van Herpen, Carla M. L. Scheffer, Gert Jan Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title | Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title_full | Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title_fullStr | Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title_full_unstemmed | Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title_short | Thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
title_sort | thermal distribution, physiological effects and toxicities of extracorporeally induced whole‐body hyperthermia in a pig model |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058172/ https://www.ncbi.nlm.nih.gov/pubmed/32097540 http://dx.doi.org/10.14814/phy2.14366 |
work_keys_str_mv | AT lasschegerben thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT frenzeltim thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT mignotmarcelh thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT jonkermariannea thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT vanderhoevenjohannesg thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT vanherpencarlaml thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel AT scheffergertjan thermaldistributionphysiologicaleffectsandtoxicitiesofextracorporeallyinducedwholebodyhyperthermiainapigmodel |