Cargando…
Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging
Evidence overwhelmingly suggests that the lymphatics play a critical role in the clearance of cerebrospinal fluid (CSF) from the cranial space. Impairment of CSF outflow into the lymphatics is associated with a number of pathological conditions including spaceflight‐associated neuro‐ocular syndrome...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058174/ https://www.ncbi.nlm.nih.gov/pubmed/32097544 http://dx.doi.org/10.14814/phy2.14375 |
_version_ | 1783503813617909760 |
---|---|
author | Rasmussen, John C. Kwon, Sunkuk Pinal, Amanda Bareis, Alexander Velasquez, Fred C. Janssen, Christopher F. Morrow, John R. Fife, Caroline E. Karni, Ron J. Sevick‐Muraca, Eva M. |
author_facet | Rasmussen, John C. Kwon, Sunkuk Pinal, Amanda Bareis, Alexander Velasquez, Fred C. Janssen, Christopher F. Morrow, John R. Fife, Caroline E. Karni, Ron J. Sevick‐Muraca, Eva M. |
author_sort | Rasmussen, John C. |
collection | PubMed |
description | Evidence overwhelmingly suggests that the lymphatics play a critical role in the clearance of cerebrospinal fluid (CSF) from the cranial space. Impairment of CSF outflow into the lymphatics is associated with a number of pathological conditions including spaceflight‐associated neuro‐ocular syndrome (SANS), a problem that limits long‐duration spaceflight. We used near‐infrared fluorescence lymphatic imaging (NIRFLI) to dynamically visualize the deep lymphatic drainage pathways shared by CSF outflow and disrupted during head‐down tilt (HDT), a method used to mimic the cephalad fluid shift that occurs in microgravity. After validating CSF clearance into the lymph nodes of the neck in swine, a pilot study was conducted in human volunteers to evaluate the effect of gravity on the flow of lymph through these deep cervical lymphatics. Injected into the palatine tonsils, ICG was imaged draining into deep jugular lymphatic vessels and subsequent cervical lymph nodes. NIRFLI was performed under HDT, sitting, and supine positions. NIRFLI shows that lymphatic drainage through pathways shared by CSF outflow are dependent upon gravity and are impaired under short‐term HDT. In addition, lymphatic contractile rates were evaluated from NIRFLI following intradermal ICG injections of the lower extremities. Lymphatic contractile activity in the legs was slowed in the gravity neutral, supine position, but increased under the influence of gravity regardless of whether its force direction opposed (sitting) or favored (HDT) lymphatic flow toward the heart. These studies evidence the role of a lymphatic contribution in SANS. |
format | Online Article Text |
id | pubmed-7058174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70581742020-03-12 Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging Rasmussen, John C. Kwon, Sunkuk Pinal, Amanda Bareis, Alexander Velasquez, Fred C. Janssen, Christopher F. Morrow, John R. Fife, Caroline E. Karni, Ron J. Sevick‐Muraca, Eva M. Physiol Rep Original Research Evidence overwhelmingly suggests that the lymphatics play a critical role in the clearance of cerebrospinal fluid (CSF) from the cranial space. Impairment of CSF outflow into the lymphatics is associated with a number of pathological conditions including spaceflight‐associated neuro‐ocular syndrome (SANS), a problem that limits long‐duration spaceflight. We used near‐infrared fluorescence lymphatic imaging (NIRFLI) to dynamically visualize the deep lymphatic drainage pathways shared by CSF outflow and disrupted during head‐down tilt (HDT), a method used to mimic the cephalad fluid shift that occurs in microgravity. After validating CSF clearance into the lymph nodes of the neck in swine, a pilot study was conducted in human volunteers to evaluate the effect of gravity on the flow of lymph through these deep cervical lymphatics. Injected into the palatine tonsils, ICG was imaged draining into deep jugular lymphatic vessels and subsequent cervical lymph nodes. NIRFLI was performed under HDT, sitting, and supine positions. NIRFLI shows that lymphatic drainage through pathways shared by CSF outflow are dependent upon gravity and are impaired under short‐term HDT. In addition, lymphatic contractile rates were evaluated from NIRFLI following intradermal ICG injections of the lower extremities. Lymphatic contractile activity in the legs was slowed in the gravity neutral, supine position, but increased under the influence of gravity regardless of whether its force direction opposed (sitting) or favored (HDT) lymphatic flow toward the heart. These studies evidence the role of a lymphatic contribution in SANS. John Wiley and Sons Inc. 2020-02-25 /pmc/articles/PMC7058174/ /pubmed/32097544 http://dx.doi.org/10.14814/phy2.14375 Text en © 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Rasmussen, John C. Kwon, Sunkuk Pinal, Amanda Bareis, Alexander Velasquez, Fred C. Janssen, Christopher F. Morrow, John R. Fife, Caroline E. Karni, Ron J. Sevick‐Muraca, Eva M. Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title | Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title_full | Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title_fullStr | Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title_full_unstemmed | Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title_short | Assessing lymphatic route of CSF outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
title_sort | assessing lymphatic route of csf outflow and peripheral lymphatic contractile activity during head‐down tilt using near‐infrared fluorescence imaging |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058174/ https://www.ncbi.nlm.nih.gov/pubmed/32097544 http://dx.doi.org/10.14814/phy2.14375 |
work_keys_str_mv | AT rasmussenjohnc assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT kwonsunkuk assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT pinalamanda assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT bareisalexander assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT velasquezfredc assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT janssenchristopherf assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT morrowjohnr assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT fifecarolinee assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT karnironj assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging AT sevickmuracaevam assessinglymphaticrouteofcsfoutflowandperipherallymphaticcontractileactivityduringheaddowntiltusingnearinfraredfluorescenceimaging |