Cargando…
Constrained Linear Movement Model (CALM): Simulation of passenger movement in airplanes
Pedestrian dynamics models the walking movement of individuals in a crowd. It has recently been used in the analysis of procedures to reduce the risk of disease spread in airplanes, relying on the SPED model. This is a social force model inspired by molecular dynamics; pedestrians are treated as poi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058282/ https://www.ncbi.nlm.nih.gov/pubmed/32134966 http://dx.doi.org/10.1371/journal.pone.0229690 |
Sumario: | Pedestrian dynamics models the walking movement of individuals in a crowd. It has recently been used in the analysis of procedures to reduce the risk of disease spread in airplanes, relying on the SPED model. This is a social force model inspired by molecular dynamics; pedestrians are treated as point particles, and their trajectories are determined in a simulation. A parameter sweep is performed to address uncertainties in human behavior, which requires a large number of simulations. The SPED model’s slow speed is a bottleneck to performing a large parameter sweep. This is a severe impediment to delivering real-time results, which are often required in the course of decision meetings, especially during emergencies. We propose a new model, called CALM, to remove this limitation. It is designed to simulate a crowd’s movement in constrained linear passageways, such as inside an aircraft. We show that CALM yields realistic results while improving performance by two orders of magnitude over the SPED model. |
---|