Cargando…
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks
Cytology is the first pathological examination performed in the diagnosis of lung cancer. In our previous study, we introduced a deep convolutional neural network (DCNN) to automatically classify cytological images as images with benign or malignant features and achieved an accuracy of 81.0%. To fur...
Autores principales: | Teramoto, Atsushi, Tsukamoto, Tetsuya, Yamada, Ayumi, Kiriyama, Yuka, Imaizumi, Kazuyoshi, Saito, Kuniaki, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058306/ https://www.ncbi.nlm.nih.gov/pubmed/32134949 http://dx.doi.org/10.1371/journal.pone.0229951 |
Ejemplares similares
-
Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks
por: Teramoto, Atsushi, et al.
Publicado: (2022) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers
por: Tsukamoto, Tetsuya, et al.
Publicado: (2022) -
Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
por: Onishi, Yuya, et al.
Publicado: (2019)