Cargando…
Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058536/ https://www.ncbi.nlm.nih.gov/pubmed/32024998 http://dx.doi.org/10.1038/s41588-019-0562-0 |
_version_ | 1783503873940389888 |
---|---|
author | Rodriguez-Martin, Bernardo Alvarez, Eva G. Baez-Ortega, Adrian Zamora, Jorge Supek, Fran Demeulemeester, Jonas Santamarina, Martin Ju, Young Seok Temes, Javier Garcia-Souto, Daniel Detering, Harald Li, Yilong Rodriguez-Castro, Jorge Dueso-Barroso, Ana Bruzos, Alicia L. Dentro, Stefan C. Blanco, Miguel G. Contino, Gianmarco Ardeljan, Daniel Tojo, Marta Roberts, Nicola D. Zumalave, Sonia Edwards, Paul A. Weischenfeldt, Joachim Puiggròs, Montserrat Chong, Zechen Chen, Ken Lee, Eunjung Alice Wala, Jeremiah A. Raine, Keiran M. Butler, Adam Waszak, Sebastian M. Navarro, Fabio C. P. Schumacher, Steven E. Monlong, Jean Maura, Francesco Bolli, Niccolo Bourque, Guillaume Gerstein, Mark Park, Peter J. Wedge, David C. Beroukhim, Rameen Torrents, David Korbel, Jan O. Martincorena, Iñigo Fitzgerald, Rebecca C. Van Loo, Peter Kazazian, Haig H. Burns, Kathleen H. Campbell, Peter J. Tubio, Jose M. C. |
author_facet | Rodriguez-Martin, Bernardo Alvarez, Eva G. Baez-Ortega, Adrian Zamora, Jorge Supek, Fran Demeulemeester, Jonas Santamarina, Martin Ju, Young Seok Temes, Javier Garcia-Souto, Daniel Detering, Harald Li, Yilong Rodriguez-Castro, Jorge Dueso-Barroso, Ana Bruzos, Alicia L. Dentro, Stefan C. Blanco, Miguel G. Contino, Gianmarco Ardeljan, Daniel Tojo, Marta Roberts, Nicola D. Zumalave, Sonia Edwards, Paul A. Weischenfeldt, Joachim Puiggròs, Montserrat Chong, Zechen Chen, Ken Lee, Eunjung Alice Wala, Jeremiah A. Raine, Keiran M. Butler, Adam Waszak, Sebastian M. Navarro, Fabio C. P. Schumacher, Steven E. Monlong, Jean Maura, Francesco Bolli, Niccolo Bourque, Guillaume Gerstein, Mark Park, Peter J. Wedge, David C. Beroukhim, Rameen Torrents, David Korbel, Jan O. Martincorena, Iñigo Fitzgerald, Rebecca C. Van Loo, Peter Kazazian, Haig H. Burns, Kathleen H. Campbell, Peter J. Tubio, Jose M. C. |
author_sort | Rodriguez-Martin, Bernardo |
collection | PubMed |
description | About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of 22 L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors. |
format | Online Article Text |
id | pubmed-7058536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-70585362020-03-18 Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition Rodriguez-Martin, Bernardo Alvarez, Eva G. Baez-Ortega, Adrian Zamora, Jorge Supek, Fran Demeulemeester, Jonas Santamarina, Martin Ju, Young Seok Temes, Javier Garcia-Souto, Daniel Detering, Harald Li, Yilong Rodriguez-Castro, Jorge Dueso-Barroso, Ana Bruzos, Alicia L. Dentro, Stefan C. Blanco, Miguel G. Contino, Gianmarco Ardeljan, Daniel Tojo, Marta Roberts, Nicola D. Zumalave, Sonia Edwards, Paul A. Weischenfeldt, Joachim Puiggròs, Montserrat Chong, Zechen Chen, Ken Lee, Eunjung Alice Wala, Jeremiah A. Raine, Keiran M. Butler, Adam Waszak, Sebastian M. Navarro, Fabio C. P. Schumacher, Steven E. Monlong, Jean Maura, Francesco Bolli, Niccolo Bourque, Guillaume Gerstein, Mark Park, Peter J. Wedge, David C. Beroukhim, Rameen Torrents, David Korbel, Jan O. Martincorena, Iñigo Fitzgerald, Rebecca C. Van Loo, Peter Kazazian, Haig H. Burns, Kathleen H. Campbell, Peter J. Tubio, Jose M. C. Nat Genet Article About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of 22 L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors. Nature Publishing Group US 2020-02-05 2020 /pmc/articles/PMC7058536/ /pubmed/32024998 http://dx.doi.org/10.1038/s41588-019-0562-0 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Rodriguez-Martin, Bernardo Alvarez, Eva G. Baez-Ortega, Adrian Zamora, Jorge Supek, Fran Demeulemeester, Jonas Santamarina, Martin Ju, Young Seok Temes, Javier Garcia-Souto, Daniel Detering, Harald Li, Yilong Rodriguez-Castro, Jorge Dueso-Barroso, Ana Bruzos, Alicia L. Dentro, Stefan C. Blanco, Miguel G. Contino, Gianmarco Ardeljan, Daniel Tojo, Marta Roberts, Nicola D. Zumalave, Sonia Edwards, Paul A. Weischenfeldt, Joachim Puiggròs, Montserrat Chong, Zechen Chen, Ken Lee, Eunjung Alice Wala, Jeremiah A. Raine, Keiran M. Butler, Adam Waszak, Sebastian M. Navarro, Fabio C. P. Schumacher, Steven E. Monlong, Jean Maura, Francesco Bolli, Niccolo Bourque, Guillaume Gerstein, Mark Park, Peter J. Wedge, David C. Beroukhim, Rameen Torrents, David Korbel, Jan O. Martincorena, Iñigo Fitzgerald, Rebecca C. Van Loo, Peter Kazazian, Haig H. Burns, Kathleen H. Campbell, Peter J. Tubio, Jose M. C. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title | Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title_full | Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title_fullStr | Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title_full_unstemmed | Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title_short | Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition |
title_sort | pan-cancer analysis of whole genomes identifies driver rearrangements promoted by line-1 retrotransposition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058536/ https://www.ncbi.nlm.nih.gov/pubmed/32024998 http://dx.doi.org/10.1038/s41588-019-0562-0 |
work_keys_str_mv | AT rodriguezmartinbernardo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT alvarezevag pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT baezortegaadrian pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT zamorajorge pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT supekfran pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT demeulemeesterjonas pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT santamarinamartin pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT juyoungseok pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT temesjavier pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT garciasoutodaniel pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT deteringharald pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT liyilong pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT rodriguezcastrojorge pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT duesobarrosoana pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT bruzosalicial pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT dentrostefanc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT blancomiguelg pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT continogianmarco pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT ardeljandaniel pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT tojomarta pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT robertsnicolad pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT zumalavesonia pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT edwardspaula pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT weischenfeldtjoachim pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT puiggrosmontserrat pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT chongzechen pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT chenken pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT leeeunjungalice pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT walajeremiaha pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT rainekeiranm pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT butleradam pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT waszaksebastianm pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT navarrofabiocp pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT schumacherstevene pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT monlongjean pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT maurafrancesco pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT bolliniccolo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT bourqueguillaume pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT gersteinmark pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT parkpeterj pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT wedgedavidc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT beroukhimrameen pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT torrentsdavid pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT korbeljano pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT martincorenainigo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT fitzgeraldrebeccac pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT vanloopeter pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT kazazianhaigh pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT burnskathleenh pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT campbellpeterj pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT tubiojosemc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition AT pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition |