Cargando…

Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez-Martin, Bernardo, Alvarez, Eva G., Baez-Ortega, Adrian, Zamora, Jorge, Supek, Fran, Demeulemeester, Jonas, Santamarina, Martin, Ju, Young Seok, Temes, Javier, Garcia-Souto, Daniel, Detering, Harald, Li, Yilong, Rodriguez-Castro, Jorge, Dueso-Barroso, Ana, Bruzos, Alicia L., Dentro, Stefan C., Blanco, Miguel G., Contino, Gianmarco, Ardeljan, Daniel, Tojo, Marta, Roberts, Nicola D., Zumalave, Sonia, Edwards, Paul A., Weischenfeldt, Joachim, Puiggròs, Montserrat, Chong, Zechen, Chen, Ken, Lee, Eunjung Alice, Wala, Jeremiah A., Raine, Keiran M., Butler, Adam, Waszak, Sebastian M., Navarro, Fabio C. P., Schumacher, Steven E., Monlong, Jean, Maura, Francesco, Bolli, Niccolo, Bourque, Guillaume, Gerstein, Mark, Park, Peter J., Wedge, David C., Beroukhim, Rameen, Torrents, David, Korbel, Jan O., Martincorena, Iñigo, Fitzgerald, Rebecca C., Van Loo, Peter, Kazazian, Haig H., Burns, Kathleen H., Campbell, Peter J., Tubio, Jose M. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058536/
https://www.ncbi.nlm.nih.gov/pubmed/32024998
http://dx.doi.org/10.1038/s41588-019-0562-0
_version_ 1783503873940389888
author Rodriguez-Martin, Bernardo
Alvarez, Eva G.
Baez-Ortega, Adrian
Zamora, Jorge
Supek, Fran
Demeulemeester, Jonas
Santamarina, Martin
Ju, Young Seok
Temes, Javier
Garcia-Souto, Daniel
Detering, Harald
Li, Yilong
Rodriguez-Castro, Jorge
Dueso-Barroso, Ana
Bruzos, Alicia L.
Dentro, Stefan C.
Blanco, Miguel G.
Contino, Gianmarco
Ardeljan, Daniel
Tojo, Marta
Roberts, Nicola D.
Zumalave, Sonia
Edwards, Paul A.
Weischenfeldt, Joachim
Puiggròs, Montserrat
Chong, Zechen
Chen, Ken
Lee, Eunjung Alice
Wala, Jeremiah A.
Raine, Keiran M.
Butler, Adam
Waszak, Sebastian M.
Navarro, Fabio C. P.
Schumacher, Steven E.
Monlong, Jean
Maura, Francesco
Bolli, Niccolo
Bourque, Guillaume
Gerstein, Mark
Park, Peter J.
Wedge, David C.
Beroukhim, Rameen
Torrents, David
Korbel, Jan O.
Martincorena, Iñigo
Fitzgerald, Rebecca C.
Van Loo, Peter
Kazazian, Haig H.
Burns, Kathleen H.
Campbell, Peter J.
Tubio, Jose M. C.
author_facet Rodriguez-Martin, Bernardo
Alvarez, Eva G.
Baez-Ortega, Adrian
Zamora, Jorge
Supek, Fran
Demeulemeester, Jonas
Santamarina, Martin
Ju, Young Seok
Temes, Javier
Garcia-Souto, Daniel
Detering, Harald
Li, Yilong
Rodriguez-Castro, Jorge
Dueso-Barroso, Ana
Bruzos, Alicia L.
Dentro, Stefan C.
Blanco, Miguel G.
Contino, Gianmarco
Ardeljan, Daniel
Tojo, Marta
Roberts, Nicola D.
Zumalave, Sonia
Edwards, Paul A.
Weischenfeldt, Joachim
Puiggròs, Montserrat
Chong, Zechen
Chen, Ken
Lee, Eunjung Alice
Wala, Jeremiah A.
Raine, Keiran M.
Butler, Adam
Waszak, Sebastian M.
Navarro, Fabio C. P.
Schumacher, Steven E.
Monlong, Jean
Maura, Francesco
Bolli, Niccolo
Bourque, Guillaume
Gerstein, Mark
Park, Peter J.
Wedge, David C.
Beroukhim, Rameen
Torrents, David
Korbel, Jan O.
Martincorena, Iñigo
Fitzgerald, Rebecca C.
Van Loo, Peter
Kazazian, Haig H.
Burns, Kathleen H.
Campbell, Peter J.
Tubio, Jose M. C.
author_sort Rodriguez-Martin, Bernardo
collection PubMed
description About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of 22 L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
format Online
Article
Text
id pubmed-7058536
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-70585362020-03-18 Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition Rodriguez-Martin, Bernardo Alvarez, Eva G. Baez-Ortega, Adrian Zamora, Jorge Supek, Fran Demeulemeester, Jonas Santamarina, Martin Ju, Young Seok Temes, Javier Garcia-Souto, Daniel Detering, Harald Li, Yilong Rodriguez-Castro, Jorge Dueso-Barroso, Ana Bruzos, Alicia L. Dentro, Stefan C. Blanco, Miguel G. Contino, Gianmarco Ardeljan, Daniel Tojo, Marta Roberts, Nicola D. Zumalave, Sonia Edwards, Paul A. Weischenfeldt, Joachim Puiggròs, Montserrat Chong, Zechen Chen, Ken Lee, Eunjung Alice Wala, Jeremiah A. Raine, Keiran M. Butler, Adam Waszak, Sebastian M. Navarro, Fabio C. P. Schumacher, Steven E. Monlong, Jean Maura, Francesco Bolli, Niccolo Bourque, Guillaume Gerstein, Mark Park, Peter J. Wedge, David C. Beroukhim, Rameen Torrents, David Korbel, Jan O. Martincorena, Iñigo Fitzgerald, Rebecca C. Van Loo, Peter Kazazian, Haig H. Burns, Kathleen H. Campbell, Peter J. Tubio, Jose M. C. Nat Genet Article About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of 22 L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors. Nature Publishing Group US 2020-02-05 2020 /pmc/articles/PMC7058536/ /pubmed/32024998 http://dx.doi.org/10.1038/s41588-019-0562-0 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rodriguez-Martin, Bernardo
Alvarez, Eva G.
Baez-Ortega, Adrian
Zamora, Jorge
Supek, Fran
Demeulemeester, Jonas
Santamarina, Martin
Ju, Young Seok
Temes, Javier
Garcia-Souto, Daniel
Detering, Harald
Li, Yilong
Rodriguez-Castro, Jorge
Dueso-Barroso, Ana
Bruzos, Alicia L.
Dentro, Stefan C.
Blanco, Miguel G.
Contino, Gianmarco
Ardeljan, Daniel
Tojo, Marta
Roberts, Nicola D.
Zumalave, Sonia
Edwards, Paul A.
Weischenfeldt, Joachim
Puiggròs, Montserrat
Chong, Zechen
Chen, Ken
Lee, Eunjung Alice
Wala, Jeremiah A.
Raine, Keiran M.
Butler, Adam
Waszak, Sebastian M.
Navarro, Fabio C. P.
Schumacher, Steven E.
Monlong, Jean
Maura, Francesco
Bolli, Niccolo
Bourque, Guillaume
Gerstein, Mark
Park, Peter J.
Wedge, David C.
Beroukhim, Rameen
Torrents, David
Korbel, Jan O.
Martincorena, Iñigo
Fitzgerald, Rebecca C.
Van Loo, Peter
Kazazian, Haig H.
Burns, Kathleen H.
Campbell, Peter J.
Tubio, Jose M. C.
Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title_full Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title_fullStr Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title_full_unstemmed Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title_short Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition
title_sort pan-cancer analysis of whole genomes identifies driver rearrangements promoted by line-1 retrotransposition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058536/
https://www.ncbi.nlm.nih.gov/pubmed/32024998
http://dx.doi.org/10.1038/s41588-019-0562-0
work_keys_str_mv AT rodriguezmartinbernardo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT alvarezevag pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT baezortegaadrian pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT zamorajorge pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT supekfran pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT demeulemeesterjonas pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT santamarinamartin pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT juyoungseok pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT temesjavier pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT garciasoutodaniel pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT deteringharald pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT liyilong pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT rodriguezcastrojorge pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT duesobarrosoana pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT bruzosalicial pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT dentrostefanc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT blancomiguelg pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT continogianmarco pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT ardeljandaniel pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT tojomarta pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT robertsnicolad pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT zumalavesonia pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT edwardspaula pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT weischenfeldtjoachim pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT puiggrosmontserrat pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT chongzechen pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT chenken pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT leeeunjungalice pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT walajeremiaha pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT rainekeiranm pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT butleradam pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT waszaksebastianm pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT navarrofabiocp pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT schumacherstevene pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT monlongjean pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT maurafrancesco pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT bolliniccolo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT bourqueguillaume pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT gersteinmark pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT parkpeterj pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT wedgedavidc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT beroukhimrameen pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT torrentsdavid pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT korbeljano pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT martincorenainigo pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT fitzgeraldrebeccac pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT vanloopeter pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT kazazianhaigh pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT burnskathleenh pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT campbellpeterj pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT tubiojosemc pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition
AT pancanceranalysisofwholegenomesidentifiesdriverrearrangementspromotedbyline1retrotransposition