Cargando…

BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine l...

Descripción completa

Detalles Bibliográficos
Autores principales: Vos de Wael, Reinder, Benkarim, Oualid, Paquola, Casey, Lariviere, Sara, Royer, Jessica, Tavakol, Shahin, Xu, Ting, Hong, Seok-Jun, Langs, Georg, Valk, Sofie, Misic, Bratislav, Milham, Michael, Margulies, Daniel, Smallwood, Jonathan, Bernhardt, Boris C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058611/
https://www.ncbi.nlm.nih.gov/pubmed/32139786
http://dx.doi.org/10.1038/s42003-020-0794-7
_version_ 1783503890979749888
author Vos de Wael, Reinder
Benkarim, Oualid
Paquola, Casey
Lariviere, Sara
Royer, Jessica
Tavakol, Shahin
Xu, Ting
Hong, Seok-Jun
Langs, Georg
Valk, Sofie
Misic, Bratislav
Milham, Michael
Margulies, Daniel
Smallwood, Jonathan
Bernhardt, Boris C.
author_facet Vos de Wael, Reinder
Benkarim, Oualid
Paquola, Casey
Lariviere, Sara
Royer, Jessica
Tavakol, Shahin
Xu, Ting
Hong, Seok-Jun
Langs, Georg
Valk, Sofie
Misic, Bratislav
Milham, Michael
Margulies, Daniel
Smallwood, Jonathan
Bernhardt, Boris C.
author_sort Vos de Wael, Reinder
collection PubMed
description Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.
format Online
Article
Text
id pubmed-7058611
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70586112020-03-19 BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets Vos de Wael, Reinder Benkarim, Oualid Paquola, Casey Lariviere, Sara Royer, Jessica Tavakol, Shahin Xu, Ting Hong, Seok-Jun Langs, Georg Valk, Sofie Misic, Bratislav Milham, Michael Margulies, Daniel Smallwood, Jonathan Bernhardt, Boris C. Commun Biol Article Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales. Nature Publishing Group UK 2020-03-05 /pmc/articles/PMC7058611/ /pubmed/32139786 http://dx.doi.org/10.1038/s42003-020-0794-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Vos de Wael, Reinder
Benkarim, Oualid
Paquola, Casey
Lariviere, Sara
Royer, Jessica
Tavakol, Shahin
Xu, Ting
Hong, Seok-Jun
Langs, Georg
Valk, Sofie
Misic, Bratislav
Milham, Michael
Margulies, Daniel
Smallwood, Jonathan
Bernhardt, Boris C.
BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title_full BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title_fullStr BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title_full_unstemmed BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title_short BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
title_sort brainspace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058611/
https://www.ncbi.nlm.nih.gov/pubmed/32139786
http://dx.doi.org/10.1038/s42003-020-0794-7
work_keys_str_mv AT vosdewaelreinder brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT benkarimoualid brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT paquolacasey brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT larivieresara brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT royerjessica brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT tavakolshahin brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT xuting brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT hongseokjun brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT langsgeorg brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT valksofie brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT misicbratislav brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT milhammichael brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT marguliesdaniel brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT smallwoodjonathan brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets
AT bernhardtborisc brainspaceatoolboxfortheanalysisofmacroscalegradientsinneuroimagingandconnectomicsdatasets