Cargando…
Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059009/ https://www.ncbi.nlm.nih.gov/pubmed/32048461 http://dx.doi.org/10.15252/emmm.201910264 |
_version_ | 1783503960705859584 |
---|---|
author | Khaledi, Ariane Weimann, Aaron Schniederjans, Monika Asgari, Ehsaneddin Kuo, Tzu‐Hao Oliver, Antonio Cabot, Gabriel Kola, Axel Gastmeier, Petra Hogardt, Michael Jonas, Daniel Mofrad, Mohammad RK Bremges, Andreas McHardy, Alice C Häussler, Susanne |
author_facet | Khaledi, Ariane Weimann, Aaron Schniederjans, Monika Asgari, Ehsaneddin Kuo, Tzu‐Hao Oliver, Antonio Cabot, Gabriel Kola, Axel Gastmeier, Petra Hogardt, Michael Jonas, Daniel Mofrad, Mohammad RK Bremges, Andreas McHardy, Alice C Häussler, Susanne |
author_sort | Khaledi, Ariane |
collection | PubMed |
description | Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. |
format | Online Article Text |
id | pubmed-7059009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70590092020-03-11 Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics Khaledi, Ariane Weimann, Aaron Schniederjans, Monika Asgari, Ehsaneddin Kuo, Tzu‐Hao Oliver, Antonio Cabot, Gabriel Kola, Axel Gastmeier, Petra Hogardt, Michael Jonas, Daniel Mofrad, Mohammad RK Bremges, Andreas McHardy, Alice C Häussler, Susanne EMBO Mol Med Articles Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. John Wiley and Sons Inc. 2020-02-12 2020-03-06 /pmc/articles/PMC7059009/ /pubmed/32048461 http://dx.doi.org/10.15252/emmm.201910264 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Khaledi, Ariane Weimann, Aaron Schniederjans, Monika Asgari, Ehsaneddin Kuo, Tzu‐Hao Oliver, Antonio Cabot, Gabriel Kola, Axel Gastmeier, Petra Hogardt, Michael Jonas, Daniel Mofrad, Mohammad RK Bremges, Andreas McHardy, Alice C Häussler, Susanne Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title | Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title_full | Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title_fullStr | Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title_full_unstemmed | Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title_short | Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
title_sort | predicting antimicrobial resistance in pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059009/ https://www.ncbi.nlm.nih.gov/pubmed/32048461 http://dx.doi.org/10.15252/emmm.201910264 |
work_keys_str_mv | AT khalediariane predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT weimannaaron predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT schniederjansmonika predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT asgariehsaneddin predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT kuotzuhao predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT oliverantonio predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT cabotgabriel predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT kolaaxel predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT gastmeierpetra predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT hogardtmichael predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT jonasdaniel predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT mofradmohammadrk predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT bremgesandreas predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT mchardyalicec predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics AT hausslersusanne predictingantimicrobialresistanceinpseudomonasaeruginosawithmachinelearningenabledmoleculardiagnostics |