Cargando…
Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telome...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059141/ https://www.ncbi.nlm.nih.gov/pubmed/31991048 http://dx.doi.org/10.1111/acel.13097 |
_version_ | 1783503987158286336 |
---|---|
author | Robin, Jérôme D. Jacome Burbano, Maria‐Sol Peng, Han Croce, Olivier Thomas, Jean Luc Laberthonniere, Camille Renault, Valerie Lototska, Liudmyla Pousse, Mélanie Tessier, Florent Bauwens, Serge Leong, Waiian Sacconi, Sabrina Schaeffer, Laurent Magdinier, Frédérique Ye, Jing Gilson, Eric |
author_facet | Robin, Jérôme D. Jacome Burbano, Maria‐Sol Peng, Han Croce, Olivier Thomas, Jean Luc Laberthonniere, Camille Renault, Valerie Lototska, Liudmyla Pousse, Mélanie Tessier, Florent Bauwens, Serge Leong, Waiian Sacconi, Sabrina Schaeffer, Laurent Magdinier, Frédérique Ye, Jing Gilson, Eric |
author_sort | Robin, Jérôme D. |
collection | PubMed |
description | Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism. |
format | Online Article Text |
id | pubmed-7059141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70591412020-03-11 Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime Robin, Jérôme D. Jacome Burbano, Maria‐Sol Peng, Han Croce, Olivier Thomas, Jean Luc Laberthonniere, Camille Renault, Valerie Lototska, Liudmyla Pousse, Mélanie Tessier, Florent Bauwens, Serge Leong, Waiian Sacconi, Sabrina Schaeffer, Laurent Magdinier, Frédérique Ye, Jing Gilson, Eric Aging Cell Original Articles Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism. John Wiley and Sons Inc. 2020-01-28 2020-03 /pmc/articles/PMC7059141/ /pubmed/31991048 http://dx.doi.org/10.1111/acel.13097 Text en © 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Robin, Jérôme D. Jacome Burbano, Maria‐Sol Peng, Han Croce, Olivier Thomas, Jean Luc Laberthonniere, Camille Renault, Valerie Lototska, Liudmyla Pousse, Mélanie Tessier, Florent Bauwens, Serge Leong, Waiian Sacconi, Sabrina Schaeffer, Laurent Magdinier, Frédérique Ye, Jing Gilson, Eric Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title | Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title_full | Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title_fullStr | Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title_full_unstemmed | Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title_short | Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime |
title_sort | mitochondrial function in skeletal myofibers is controlled by a trf2‐sirt3 axis over lifetime |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059141/ https://www.ncbi.nlm.nih.gov/pubmed/31991048 http://dx.doi.org/10.1111/acel.13097 |
work_keys_str_mv | AT robinjeromed mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT jacomeburbanomariasol mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT penghan mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT croceolivier mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT thomasjeanluc mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT laberthonnierecamille mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT renaultvalerie mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT lototskaliudmyla mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT poussemelanie mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT tessierflorent mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT bauwensserge mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT leongwaiian mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT sacconisabrina mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT schaefferlaurent mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT magdinierfrederique mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT yejing mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime AT gilsoneric mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime |