Cargando…

Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime

Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telome...

Descripción completa

Detalles Bibliográficos
Autores principales: Robin, Jérôme D., Jacome Burbano, Maria‐Sol, Peng, Han, Croce, Olivier, Thomas, Jean Luc, Laberthonniere, Camille, Renault, Valerie, Lototska, Liudmyla, Pousse, Mélanie, Tessier, Florent, Bauwens, Serge, Leong, Waiian, Sacconi, Sabrina, Schaeffer, Laurent, Magdinier, Frédérique, Ye, Jing, Gilson, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059141/
https://www.ncbi.nlm.nih.gov/pubmed/31991048
http://dx.doi.org/10.1111/acel.13097
_version_ 1783503987158286336
author Robin, Jérôme D.
Jacome Burbano, Maria‐Sol
Peng, Han
Croce, Olivier
Thomas, Jean Luc
Laberthonniere, Camille
Renault, Valerie
Lototska, Liudmyla
Pousse, Mélanie
Tessier, Florent
Bauwens, Serge
Leong, Waiian
Sacconi, Sabrina
Schaeffer, Laurent
Magdinier, Frédérique
Ye, Jing
Gilson, Eric
author_facet Robin, Jérôme D.
Jacome Burbano, Maria‐Sol
Peng, Han
Croce, Olivier
Thomas, Jean Luc
Laberthonniere, Camille
Renault, Valerie
Lototska, Liudmyla
Pousse, Mélanie
Tessier, Florent
Bauwens, Serge
Leong, Waiian
Sacconi, Sabrina
Schaeffer, Laurent
Magdinier, Frédérique
Ye, Jing
Gilson, Eric
author_sort Robin, Jérôme D.
collection PubMed
description Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.
format Online
Article
Text
id pubmed-7059141
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70591412020-03-11 Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime Robin, Jérôme D. Jacome Burbano, Maria‐Sol Peng, Han Croce, Olivier Thomas, Jean Luc Laberthonniere, Camille Renault, Valerie Lototska, Liudmyla Pousse, Mélanie Tessier, Florent Bauwens, Serge Leong, Waiian Sacconi, Sabrina Schaeffer, Laurent Magdinier, Frédérique Ye, Jing Gilson, Eric Aging Cell Original Articles Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism. John Wiley and Sons Inc. 2020-01-28 2020-03 /pmc/articles/PMC7059141/ /pubmed/31991048 http://dx.doi.org/10.1111/acel.13097 Text en © 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Robin, Jérôme D.
Jacome Burbano, Maria‐Sol
Peng, Han
Croce, Olivier
Thomas, Jean Luc
Laberthonniere, Camille
Renault, Valerie
Lototska, Liudmyla
Pousse, Mélanie
Tessier, Florent
Bauwens, Serge
Leong, Waiian
Sacconi, Sabrina
Schaeffer, Laurent
Magdinier, Frédérique
Ye, Jing
Gilson, Eric
Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title_full Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title_fullStr Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title_full_unstemmed Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title_short Mitochondrial function in skeletal myofibers is controlled by a TRF2‐SIRT3 axis over lifetime
title_sort mitochondrial function in skeletal myofibers is controlled by a trf2‐sirt3 axis over lifetime
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059141/
https://www.ncbi.nlm.nih.gov/pubmed/31991048
http://dx.doi.org/10.1111/acel.13097
work_keys_str_mv AT robinjeromed mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT jacomeburbanomariasol mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT penghan mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT croceolivier mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT thomasjeanluc mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT laberthonnierecamille mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT renaultvalerie mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT lototskaliudmyla mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT poussemelanie mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT tessierflorent mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT bauwensserge mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT leongwaiian mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT sacconisabrina mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT schaefferlaurent mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT magdinierfrederique mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT yejing mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime
AT gilsoneric mitochondrialfunctioninskeletalmyofibersiscontrolledbyatrf2sirt3axisoverlifetime